Zobrazeno 1 - 10
of 39
pro vyhledávání: '"P. H. Diananda"'
Autor:
P. H. Diananda
Publikováno v:
Mathematische Annalen. 250:95-98
Autor:
P. H. Diananda
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. 76:183-186
For t > 0, letwhere xn+r = xr ≥ 0 and xr+1 + xr+2 > 0 for each r.
Autor:
M. V. Subbarao, P. H. Diananda
Publikováno v:
Proceedings of the American Mathematical Society. 62:7-10
Let Q k ( n ) {Q_k}(n) be the number of k-free integers ⩽ n \leqslant n and d ( Q k ) d({Q_k}) the Schnirelmann density of the k-free integers. If k ⩾ 5 k \geqslant 5 , it is shown that Q k ( n ) / n = d ( Q k ) {Q_k}(n)/n = d({Q_k}) for some n s
Publikováno v:
The American Mathematical Monthly. 64:488-497
Autor:
P. H. Diananda
Publikováno v:
Journal of the London Mathematical Society. :424-431
Autor:
P. H. Diananda
Publikováno v:
Proceedings of the Edinburgh Mathematical Society. 13:143-152
Throughout this paper, unless otherwise stated,nandLstand for positive integers and α,t,x,x1,x2, … for positive real numbers. Letwhereand
Autor:
P. H. Diananda
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. 58:17-25
In a recent paper (3) Mordell proposed for solutionPROBLEM 1. To find the constants a1, …, an so thatwhere xn+i = xi ≥ 0 for all i.
Autor:
P. H. Diananda, Seymour Haber, Azriel Rosenfeld, M. S. Klamkin, D. J. Newman, Victor Thébault
Publikováno v:
The American Mathematical Monthly. 66:489-497
Autor:
P. H. Diananda, M. S. Bartlett
Publikováno v:
Journal of the Royal Statistical Society: Series B (Methodological). 12:108-115
Autor:
P. H. Diananda, M. S. Bartlett
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. 49:239-246
In fundamental papers Bernstein (3) and Loève(8) have proved central limit theorems for wide classes of dependent variables. Their theorems are stated in terms of conditional distributions. In the case of dn-dependent variables (see § 3) they assum