Zobrazeno 1 - 5
of 5
pro vyhledávání: '"P. G. Patseika"'
Autor:
Pavel G. Patseika, Yauheni A. Rouba
Publikováno v:
Журнал Белорусского государственного университета: Математика, информатика, Iss 3, Pp 6-24 (2021)
Approximations on the segment [−1, 1] of Markov functions by Abel – Poisson sums of a rational integral operator of Fourier type associated with the Chebyshev – Markov system of algebraic fractions in the case of a fixed number of geometrically
Externí odkaz:
https://doaj.org/article/e5bafd0fcaf743fe82f75a1eaf336d7b
Publikováno v:
Журнал Белорусского государственного университета: Математика, информатика, Iss 2, Pp 6-27 (2020)
The purpose of this paper is to construct an integral rational Fourier operator based on the system of Chebyshev – Markov rational functions and to study its approximation properties on classes of Markov functions. In the introduction the main resu
Externí odkaz:
https://doaj.org/article/b77f09cdddd54917ac71b9e169b976ff
Autor:
Pavel G. Patseika, Yauheni A. Rouba
Publikováno v:
Журнал Белорусского государственного университета: Математика, информатика, Iss 3, Pp 18-34 (2019)
Approximation properties of Fejer means of Fourier series by Chebyshev – Markov system of algebraic fractions and approximation by Fejer means of function |x|s, 0 < s < 2, on the interval [−1,1], are studied. One orthogonal system of Chebyshev
Externí odkaz:
https://doaj.org/article/06dfaa4afa834eda9a5c44014f4a6b0d
Autor:
Y. A. Rouba, P. G. Patseika
Publikováno v:
Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 57:156-175
Herein, the approximation properties of the Abel – Poisson means of rational conjugate Fourier series on the system of the Chebyshev–Markov algebraic fractions are studied, and the approximations of conjugate functions with density | x |s , s ∈
Autor:
P. G. Patseika, E. A. Rovba
Publikováno v:
Russian Mathematics. 64:61-75
In this paper, we study approximative properties of partial sums of a conjugate Fourier series with respect to a certain system of Chebyshev – Markov algebraic fractions. We cite the main results obtained in known works devoted to studying approxim