Zobrazeno 1 - 10
of 1 902
pro vyhledávání: '"P. Ercolani"'
Autor:
Ercolani, Nicholas M.
In this paper we study (static) solutions of the rank 2 Yang-Mills-Higgs equations on the Riemann sphere, with concical singularities, that bifurcate from constant curvature connections. We focus attention on the case where there are exactly four suc
Externí odkaz:
http://arxiv.org/abs/2404.10196
In this paper we define and lay the groundwork for studying a novel matrix ensemble: totally positive Hessenberg Toeplitz operators, denoted TPHT. This is the intersection of two ensembles that have been significantly explored: totally positive Hesse
Externí odkaz:
http://arxiv.org/abs/2311.10978
This contribution summarizes recent work of the authors that combines methods from dynamical systems theory (discrete Painlev\'e equations) and asymptotic analysis of orthogonal polynomial recurrences, to address long-standing questions in map enumer
Externí odkaz:
http://arxiv.org/abs/2308.06369
Autor:
Ercolani, Nicholas M.
In this paper we establish the existence of canonical coordinates for generic co-adjoint orbits on triangular groups. These orbits correspond to a set of full Plancherel measure on the associated dual groups. This generalizes a well-known coordinatiz
Externí odkaz:
http://arxiv.org/abs/2301.12544
Autor:
Sofia Gabellone, Silvia Vanni, Valentina Fausti, Giacomo Miserocchi, Chiara Liverani, Chiara Spadazzi, Claudia Cocchi, Chiara Calabrese, Davide Cavaliere, Carlo Alberto Pacilio, Giorgio Ercolani, Federica Pieri, Lorena Gurrieri, Nada Riva, Robin Jones, Alessandro De Vita
Publikováno v:
Heliyon, Vol 10, Iss 23, Pp e40596- (2024)
Objectives: Gastrointestinal stromal tumors, the most prevalent mesenchymal tumors (80 %) of the gastrointestinal tract, comprise less than 1 % of all gastrointestinal neoplasms and about 5 % of all sarcomas. Despite their rarity, Gastrointestinal st
Externí odkaz:
https://doaj.org/article/da6fe95f84b94863ac7f39c8a2a24d44
The problem of map enumeration concerns counting connected spatial graphs, with a specified number $j$ of vertices, that can be embedded in a compact surface of genus $g$ in such a way that its complement yields a cellular decomposition of the surfac
Externí odkaz:
http://arxiv.org/abs/2210.00671
Publikováno v:
Nonlinearity 36, 1663-1698 (2023)
We introduce a systematic approach to express generating functions for the enumeration of maps on surfaces of high genus in terms of a single generating function relevant to planar surfaces. Central to this work is the comparison of two asymptotic ex
Externí odkaz:
http://arxiv.org/abs/2210.00668
Autor:
Barret, Didier, Albouys, Vincent, Herder, Jan-Willem den, Piro, Luigi, Cappi, Massimo, Huovelin, Juhani, Kelley, Richard, Mas-Hesse, J. Miguel, Paltani, Stéphane, Rauw, Gregor, Rozanska, Agata, Svoboda, Jiri, Wilms, Joern, Yamasaki, Noriko, Audard, Marc, Bandler, Simon, Barbera, Marco, Barcons, Xavier, Bozzo, Enrico, Ceballos, Maria Teresa, Charles, Ivan, Costantini, Elisa, Dauser, Thomas, Decourchelle, Anne, Duband, Lionel, Duval, Jean-Marc, Fiore, Fabrizio, Gatti, Flavio, Goldwurm, Andrea, Hartog, Roland den, Jackson, Brian, Jonker, Peter, Kilbourne, Caroline, Korpela, Seppo, Macculi, Claudio, Mendez, Mariano, Mitsuda, Kazuhisa, Molendi, Silvano, Pajot, François, Pointecouteau, Etienne, Porter, Frederick, Pratt, Gabriel W., Prêle, Damien, Ravera, Laurent, Sato, Kosuke, Schaye, Joop, Shinozaki, Keisuke, Skup, Konrad, Soucek, Jan, Thibert, Tanguy, Vink, Jacco, Webb, Natalie, Chaoul, Laurence, Raulin, Desi, Simionescu, Aurora, Torrejon, Jose Miguel, Acero, Fabio, Branduardi-Raymont, Graziella, Ettori, Stefano, Finoguenov, Alexis, Grosso, Nicolas, Kaastra, Jelle, Mazzotta, Pasquale, Miller, Jon, Miniutti, Giovanni, Nicastro, Fabrizio, Sciortino, Salvatore, Yamaguchi, Hiroya, Beaumont, Sophie, Cucchetti, Edoardo, D'Andrea, Matteo, Eckart, Megan, Ferrando, Philippe, Kammoun, Elias, Lotti, Simone, Mesnager, Jean-Michel, Natalucci, Lorenzo, Peille, Philippe, de Plaa, Jelle, Ardellier, Florence, Argan, Andrea, Bellouard, Elise, Carron, Jérôme, Cavazzuti, Elisabetta, Fiorini, Mauro, Khosropanah, Pourya, Martin, Sylvain, Perry, James, Pinsard, Frederic, Pradines, Alice, Rigano, Manuela, Roelfsema, Peter, Schwander, Denis, Torrioli, Guido, Ullom, Joel, Vera, Isabel, Villegas, Eduardo Medinaceli, Zuchniak, Monika, Brachet, Frank, Cicero, Ugo Lo, Doriese, William, Durkin, Malcom, Fioretti, Valentina, Geoffray, Hervé, Jacques, Lionel, Kirsch, Christian, Smith, Stephen, Adams, Joseph, Gloaguen, Emilie, Hoogeveen, Ruud, van der Hulst, Paul, Kiviranta, Mikko, van der Kuur, Jan, Ledot, Aurélien, van Leeuwen, Bert-Joost, van Loon, Dennis, Lyautey, Bertrand, Parot, Yann, Sakai, Kazuhiro, van Weers, Henk, Abdoelkariem, Shariefa, Adam, Thomas, Adami, Christophe, Aicardi, Corinne, Akamatsu, Hiroki, Alonso, Pablo Eleazar Merino, Amato, Roberta, André, Jérôme, Angelinelli, Matteo, Anon-Cancela, Manuel, Anvar, Shebli, Atienza, Ricardo, Attard, Anthony, Auricchio, Natalia, Balado, Ana, Bancel, Florian, Barusso, Lorenzo Ferrari, Bernard, Vivian, Berrocal, Alicia, Blin, Sylvie, Bonino, Donata, Bonnet, François, Bonny, Patrick, Boorman, Peter, Boreux, Charles, Bounab, Ayoub, Boutelier, Martin, Boyce, Kevin, Brienza, Daniele, Bruijn, Marcel, Bulgarelli, Andrea, Calarco, Simona, Callanan, Paul, Camus, Thierry, Canourgues, Florent, Capobianco, Vito, Cardiel, Nicolas, Castellani, Florent, Cheatom, Oscar, Chervenak, James, Chiarello, Fabio, Clerc, Nicolas, Clerc, Laurent, Cobo, Beatriz, Coeur-Joly, Odile, Coleiro, Alexis, Colonges, Stéphane, Corcione, Leonardo, Coriat, Mickael, Coynel, Alexandre, Cuttaia, Francesco, D'Ai, Antonino, D'anca, Fabio, Dadina, Mauro, Daniel, Christophe, DeNigris, Natalie, Dercksen, Johannes, DiPirro, Michael, Doumayrou, Eric, Dubbeldam, Luc, Dupieux, Michel, Dupourqué, Simon, Durand, Jean Louis, Eckert, Dominique, Eiriz, Valvanera, Ercolani, Eric, Etcheverry, Christophe, Finkbeiner, Fred, Fiocchi, Mariateresa, Fossecave, Hervé, Franssen, Philippe, Frericks, Martin, Gabici, Stefano, Gant, Florent, Gao, Jian-Rong, Gastaldello, Fabio, Genolet, Ludovic, Ghizzardi, Simona, Gil, M Angeles Alcacera, Giovannini, Elisa, Godet, Olivier, Gomez-Elvira, Javier, Gonzalez, Manuel, Gonzalez, Raoul, Gottardi, Luciano, Granat, Dolorès, Gros, Michel, Guignard, Nicolas, Hieltjes, Paul, Hurtado, Adolfo Jesus, Irwin, Kent, Jacquey, Christian, Janiuk, Agnieszka, Jaubert, Jean, Jiménez, Maria, Jolly, Antoine, Jourdan, Thierry, Julien, Sabine, Kedziora, Bartosz, Korb, Andrew, Kreykenbohm, Ingo, König, Ole, Langer, Mathieu, Laudet, Philippe, Laurent, Philippe, Laurenza, Monica, Lesrel, Jean, Ligori, Sebastiano, Lorenz, Maximilian, Luminari, Alfredo, Maffei, Bruno, Maisonnave, Océane, Marelli, Lorenzo, Massonet, Didier, Maussang, Irwin, Melchor, Alejandro Gonzalo, Mer, Isabelle Le, Michalski, Lea, Millerioux, Jean-Pierre, Mineo, Teresa, Minervini, Gabriele, Molin, Alexeï, Monestes, David, Montinaro, Nicola, Mot, Baptiste, Murat, David, Nagayoshi, Kenichiro, Nazé, Yaël, Noguès, Loïc, Pailot, Damien, Panessa, Francesca, Parodi, Luigi, Petit, Pascal, Piconcelli, Enrico, Pinto, Ciro, Plaza, Jose Miguel Encinas, Poyatos, David, Prouvé, Thomas, Ptak, Andy, Puccetti, Simonetta, Puccio, Elena, Ramon, Pascale, Reina, Manuel, Rioland, Guillaume, Rodriguez, Louis, Roig, Anton, Rollet, Bertrand, Roncarelli, Mauro, Roudil, Gilles, Rudnicki, Tomasz, Sanisidro, Julien, Sciortino, Luisa, Silva, Vitor, Sordet, Michael, Soto-Aguilar, Javier, Spizzi, Pierre, Surace, Christian, Sánchez, Miguel Fernández, Taralli, Emanuele, Terrasa, Guilhem, Terrier, Régis, Todaro, Michela, Ubertini, Pietro, Uslenghi, Michela, de Vaate, Jan Geralt Bij, Vaccaro, Davide, Varisco, Salvatore, Varnière, Peggy, Vibert, Laurent, Vidriales, María, Villa, Fabrizio, Vodopivec, Boris Martin, Volpe, Angela, de Vries, Cor, Wakeham, Nicholas, Walmsley, Gavin, Wise, Michael, de Wit, Martin, Woźniak, Grzegorz
The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science t
Externí odkaz:
http://arxiv.org/abs/2208.14562
Publikováno v:
Mathematical Physics, Analysis and Geometry, 26:2 (2023)
We study extensions of the classical Toda lattices at several different space-time scales. These extensions are from the classical tridiagonal phase spaces to the phase space of full Hessenberg matrices, referred to as the Full Kostant-Toda Lattice.
Externí odkaz:
http://arxiv.org/abs/2203.15164
Publikováno v:
Journal of Functional Analysis 285 (2023) 110074
We study the Ginzburg-Landau equations on line bundles over non-compact Riemann surfaces with constant negative curvature. We prove existence of solutions with energy strictly less than that of the constant curvature (magnetic field) one. These solut
Externí odkaz:
http://arxiv.org/abs/2203.14179