Zobrazeno 1 - 10
of 12
pro vyhledávání: '"P. E. Sobolevskiĭ"'
Publikováno v:
Abstract and Applied Analysis, Vol 6, Iss 1, Pp 53-61 (2001)
The nonlocal boundary value problem, v′(t)+Av(t)=f(t)(0≤t≤1),v(0)=v(λ)+μ(0
Externí odkaz:
https://doaj.org/article/99aec81e875f4c848b05c8ea0ac3cadd
Autor:
V. P. Orlov, P. E. Sobolevskiĭ
Publikováno v:
Differential Integral Equations 4, no. 1 (1991), 103-115
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cf8f364490bab702ad4f0f4b818ea7ac
http://projecteuclid.org/euclid.die/1371569637
http://projecteuclid.org/euclid.die/1371569637
Publikováno v:
American Mathematical Society Translations: Series 2. :113-131
Autor:
P. E. Sobolevskiĭ
Publikováno v:
Ten Papers on Functional Analysis and Measure Theory. :1-62
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2004, Iss 2, Pp 273-286 (2004)
We consider the nonlocal boundary value problem for difference equations (uk−uk−1)/τ+Auk=φk, 1≤k≤N, Nτ=1, and u0=u[λ/τ]+φ, 0
Externí odkaz:
https://doaj.org/article/edba1d0ce84947a6b47e5a8b73e7ca5e
Autor:
A. Ashyralyev, P. E. Sobolevskii
Publikováno v:
Abstract and Applied Analysis, Vol 6, Iss 5, Pp 267-297 (2001)
We consider the initial-value problem for linear delay partial differential equations of the parabolic type. We give a sufficient condition for the stability of the solution of this initial-value problem. We present the stability estimates for the so
Externí odkaz:
https://doaj.org/article/071d66918cc044de9f6e989c9d7ca130
Autor:
A. Ashyralyev, P. E. Sobolevskii
Publikováno v:
Abstract and Applied Analysis, Vol 6, Iss 2, Pp 63-70 (2001)
The initial value problem for hyperbolic equations d 2u(t)/dt 2+A u(t)=f(t)(0≤t≤1),u(0)=φ,u′(0)=ψ, in a Hilbert space H is considered. The first and second order accuracy difference schemes generated by the integer power of A approximately so
Externí odkaz:
https://doaj.org/article/14c4190124984e87ad3157d78039f4db
Publikováno v:
Abstract and Applied Analysis, Vol 2006 (2006)
The nonlocal boundary value problem for hyperbolic-elliptic equation d2u(t)/dt2+Au(t)=f(t), (0≤t≤1), −d2u(t)/dt2+Au(t)=g(t), (−1≤t≤0), u(0)=ϕ, u(1)=u(−1) in a Hilbert space H is considered. The second order of accuracy difference schem
Externí odkaz:
https://doaj.org/article/3d670ae4ebc24c82a7aa518055a3f060