Zobrazeno 1 - 10
of 132
pro vyhledávání: '"P. Chaipunya"'
Publikováno v:
Fixed Point Theory and Algorithms for Sciences and Engineering, Vol 2023, Iss 1, Pp 1-21 (2023)
Abstract We present enriched Kannan and enriched Bianchini mappings in the framework of unique geodesic spaces. For such mappings, we establish the existence and uniqueness of a fixed point in the setting of CAT(0) spaces and show that an appropriate
Externí odkaz:
https://doaj.org/article/f3d66e741fb2426db115b7391d986427
Autor:
Aussel, Didier, Chaipunya, Parin
Local solutions for variational and quasi-variational inequalities are usually the best type of solutions that could practically be obtained when in case of lack of convexity or else when available numerical techniques are too limited for global solu
Externí odkaz:
http://arxiv.org/abs/2402.02115
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The aim of this article is to introduce an iterative algorithm for finding a common solution from the set of an equilibrium point for a bifunction and the set of a singularity of an inclusion problem on an Hadamard manifold. We also discuss some part
Externí odkaz:
http://arxiv.org/abs/1907.00364
In this paper, we discuss about monotone vector fields, which is a typical extension to the theory of convex functions, by exploiting the tangent space structure. This new approach to monotonicity in CAT(0) spaces stands in opposed to the monotonicit
Externí odkaz:
http://arxiv.org/abs/1906.05984
Publikováno v:
AIMS Mathematics, Vol 8, Iss 1, Pp 2093-2116 (2023)
An inertial Mann algorithm will be presented in this article with the purpose of approximating a fixed point of a nonexpansive mapping on a Hadamard manifold. Any sequence that is generated by using the proposed approach, under suitable assumptions,
Externí odkaz:
https://doaj.org/article/3e72bbc3ca6b415f879bf7ecb721ed16
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Chaipunya, Parin
In this paper, we discuss the fixed point property for an infinite family of order-preserving mappings which satisfy the Lipschitzian condition on comparable pairs. The underlying framework of our main results is a metric space of any global upper cu
Externí odkaz:
http://arxiv.org/abs/1811.11585
Autor:
Kumam, Poom, Chaipunya, Parin
In this paper, we consider the equilibrium problems and also their regularized problems under the setting of Hadamard spaces. The solution to the regularized problem is represented in terms of resolvent operators. As an essential machinery in the exi
Externí odkaz:
http://arxiv.org/abs/1807.10900
Autor:
Muhammad Uzair Awan, Artion Kashuri, Kottakkaran Sooppy Nisar, Muhammad Zakria Javed, Sabah Iftikhar, Poom Kumam, Parin Chaipunya
Publikováno v:
Journal of Inequalities and Applications, Vol 2022, Iss 1, Pp 1-34 (2022)
Abstract In this paper, the authors derive some new generalizations of fractional trapezium-like inequalities using the class of harmonic convex functions. Moreover, three new fractional integral identities are given, and on using them as auxiliary r
Externí odkaz:
https://doaj.org/article/8c39bd0d4c2e4fe9bbaf8c9282b43b43