Zobrazeno 1 - 10
of 20
pro vyhledávání: '"P. C. Fife"'
Publikováno v:
Behavioural Neurology, Vol 2020 (2020)
Externí odkaz:
https://doaj.org/article/3f9fd972314d4829b6e73e9b5bce44fd
Publikováno v:
Behavioural Neurology, Vol 2015 (2015)
Purpose. Hopelessness theory predicts that negative attributional style will interact with negative life events over time to predict depression. The intention of this study was to test this in a population who are at greater risk of negative life eve
Externí odkaz:
https://doaj.org/article/ae8be3f2ab44483c849df0f8441f2e07
Autor:
Paul C. Fife
Publikováno v:
Electronic Journal of Differential Equations, Vol 2000, Iss 48, Pp 1-26 (2000)
The gradient flow approach to the Cahn-Hilliard and phase field models is developed, and some basic mathematical properties of the models, especially phase separation phenomena, are reviewed.
Externí odkaz:
https://doaj.org/article/4dd047cacdea47bdb17beab796732d1b
Autor:
Paul C. Fife, Oliver Penrose
Publikováno v:
Electronic Journal of Differential Equations, Vol 1995, Iss 16, Pp 1-49 (1995)
We study certain approximate solutions of a system of equations formulated in an earlier paper (Physica D 43, 44-62 (1990)) which in dimensionless form are $$u_t + gamma w(phi)_t = abla^2u,,$$ $$alpha epsilon^2phi_t = epsilon^2abla^2phi + F(phi,u),,$
Externí odkaz:
https://doaj.org/article/e51849f93aad4451819bf171c15d37f1
Autor:
L. A. Peletier, P. C. Fife
Publikováno v:
Quarterly of Applied Mathematics. 54:85-104
Publikováno v:
Quarterly of Applied Mathematics. 51:467-493
A model problem for the propagation of a combustion front through a periodically inhomogeneous medium is posed. The existence of a steady state solution is proved, in which the front’s velocity is periodic in time. Computer simulations are carried
Autor:
P. C. Fife
Publikováno v:
Eigenvalues of Non-Linear Problems ISBN: 9783642109393
Branching phenomena in mathematical physics and biology can best be described as fascinating, prevalent, and difficult. The first description expresses my own viewpoint, which I hope you will share with me and a growing number of mathematicians. As f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::830be9b98739ab43cb4f648e1bcc9802
https://doi.org/10.1007/978-3-642-10940-9_2
https://doi.org/10.1007/978-3-642-10940-9_2
Autor:
Peter W. Bates, P. C. Fife
Publikováno v:
Physica D: Nonlinear Phenomena. 43:335-348
We initiate a study of the instability properties of steady solutions of the Cahn-Hilliard (CH) equation and the phase field (PF) system in terms of the coarseness of those solutions. Other spectral results are obtained as well. Steady state solution
Autor:
L. A. Skornyakov, I. P. Mysovskikh, A. A. Talalyan, E. D. Solomentsev, A. G. Sveshnikov, V. A. Chuyanov, A. L. Shmel’kin, V. A. Andrunakievich, R. A. Minlos, K. Yu. Bulota, L. V. Kuz’min, M. P. Mineev, B. A. Sevast’yanov, N. N. Cnentsov, R. L. Dobrushin, V. V. Prelov, Yu. V. Prokhorov, A. M. Yaglom, V. F. Kolchin, V. I. Pagurova, A. A. Borovkov, M. S. Nikulin, T. Yu. Popova, O. A. Ivanova, V. L. Popov, V. E. Govorov, M. V. Fedoryuk, E. G. D’yakonov, K. P. Dolzhenko, Viktor S. Kulikov, D. Sullivan, L. D. Kudryavtsev, Val. S. Kulikov, A. S. Rapinchuk, A. V. Malyshev, C. Dellacherie, V. M. Babich, A. V. Prokhorov, N. Kh. Rozov, P. C. Fife, D. A. Gudkov, D. A. Ponomarev, V. E. Plisko, S. A. Stepanov, B. I. Golubov, S. N. Artemov, K. M. Millionshchikov, V. M. Millionshchikov, N. V. Belyakin, V. A. Dushskiĭ, P. J. Rousseeuw, V. K. Domanskiĭ, S. S. Goncharov, A. N. Degtev, S. G. Tankeev, V. N. Grishin, V. M. Millwnshchikov, D. V. Alekseevskiĭ, L. N. Shevrin, V. F. Turchin, A. V. Arkhangelskiĭ, E. B. Vinberg, E. P. Dolzhenko, N. N. Vil’yams, E. V. Solomentsev, V. A. Buevich, I. B. Vapnyarskiĭ, U. A. Vladimirov, N. N. Viil’yams, A. B. Ivanov, V. I. Danilov, L. N. Shevnn, A. P. Terekhin, Yu. S. Ilyashenko, A. V. Arkhangel Skiĭ, J. J. Volkov, V. P. Platonov, I. I. Volkov, V. Ya. Arsenin, A. N. Tikhonov, A. S. Mishchenko, A. P. Norden, A. V. Mikhalev, E. G. Sklyarenko, D. D. Sokolov, A. A. Ruzmaĭkin, E. S. Nikolaev, N. A. Karpova, S. V. Yablonskiĭ, Yu. K. Belyaev, B. V. Gnedenko, V. A. Sevast’yanov, S. A. Anikin, M. Sh. Tsalenko, A. L. Onishchik, A. N. Rudakov, C. M. Ringel, L. M. Gluskin, E. S. Lyapin, A. I. Shtern, A. V. Roĭter, N. M. Nagornyĭ, Yu. I. Merzlyakov, E. A. Golubov, A. P. Yuzhakov, V. I. Sobolev, L. V. Kuzmm, M. I. Voĭtseknovskiĭ, N. V. Butenin, A. D. Bryuno, I. V. Proskuryakov, A. M. Nakhushev, A. V. Arkhangel’skiĭ, V. S. Malakhovskiĭ, E. L. Tonkov, L. A. Sidorov, I. Kh. Sabitov, V. V. Shardurov, A. A. Konyushkov, F. D. Gakhov, V. A. Il’in, A. M. Nakhyshev, E. M. Chirka, T. P. Lykashenko, S. L. Krushkal’, Ü. Lumiste, V. A. Toponogov, Yu. D. Burago, A. D. Aleksandrov, V. N. Berestovskiĭ, V. M. Tikhomirov, T. P. Lukashenko, V. F. Emel’yanov, Yu. B. Rudyak, V. M. Kopytov, A. N. Parshin, Yu. A. Bakhturin, K. A. Zhevlakov
Publikováno v:
Encyclopaedia of Mathematics ISBN: 9780792329763
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3cdd43676f4a9013832706d3f2834a90
https://doi.org/10.1007/978-1-4899-3791-9_6
https://doi.org/10.1007/978-1-4899-3791-9_6
Autor:
P C Fife, W M Greenlee
Publikováno v:
Russian Mathematical Surveys. 29:103-131
Contents § 1. Introduction § 2. Statement of results; remarks § 3. The basic approximation § 4. A generalized implicit function theorem § 5. Reformulation § 6. The invertibility of Ae § 7. Proof of Theorem 2.1References