Zobrazeno 1 - 10
of 6 156
pro vyhledávání: '"P. Borah"'
Publikováno v:
Journal of Ocean Engineering and Science, Vol 6, Iss 3, Pp 276-284 (2021)
We consider a device which consists of a floating structure over a cylindrical plate placed at a finite height from the impermeable ocean floor. This paper developes the interaction of linear water waves with such a device. The whole fluid domain is
Externí odkaz:
https://doaj.org/article/bc37c1ffdde04c0ba7f209d7532d6dc3
Autor:
Bhatnagar, Anjali, Borah, Diganta
We study several intrinsic properties of the Carath\'eodory and Szeg\"o metrics on finitely connected planar domains. Among them are the existence of closed geodesics and geodesics spirals, boundary behaviour of Gaussian curvatures, and $L^2$-cohomol
Externí odkaz:
http://arxiv.org/abs/2410.20955
We study the cogenesis of baryon and dark matter (DM) in an extended reheating period after the end of slow-roll inflation. Within the regime of perturbative reheating, we consider different monomial potential of the inflaton field during reheating e
Externí odkaz:
http://arxiv.org/abs/2410.19048
Autor:
Borah, Debasish, Das, Nayan
We study the possibility of producing the observed baryon asymmetry of the Universe (BAU) and dark matter (DM) from evaporating primordial black holes (PBH) beyond the semi-classical regime incorporating the impact of memory burden. In the simplest s
Externí odkaz:
http://arxiv.org/abs/2410.16403
Let $M$ be a Riemann surface which admits an exhaustion by open subsets $M_j$ each of which is biholomorphic to a fixed domain $\Omega \subset \mathbb{C}$. We describe $M$ in terms of $\Omega$ under various assumptions on the boundary components of $
Externí odkaz:
http://arxiv.org/abs/2410.09891
Autor:
Belle II Collaboration, Adachi, I., Aggarwal, L., Ahmed, H., Aihara, H., Akopov, N., Aloisio, A., Althubiti, N., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, V., Aversano, M., Ayad, R., Babu, V., Bae, H., Baghel, N. K., Bahinipati, S., Bambade, P., Banerjee, Sw., Bansal, S., Baudot, J., Baur, A., Beaubien, A., Becherer, F., Becker, J., Bennett, J. V., Bernlochner, F. U., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhardwaj, V., Bianchi, F., Bilka, T., Biswas, D., Bobrov, A., Bodrov, D., Bondar, A., Borah, J., Boschetti, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campagna, Q., Campajola, M., Cao, L., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Chang, P., Cheaib, R., Cheema, P., Chen, C., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., De La Cruz-Burelo, E., De La Motte, S. A., De Nardo, G., De Pietro, G., de Sangro, R., Destefanis, M., Dhamija, R., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Dong, T. V., Dorigo, M., Dubey, S., Dugic, K., Dujany, G., Ecker, P., Epifanov, D., Feichtinger, P., Ferber, T., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Garg, R., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Gironella, P., Glazov, A., Gobbo, B., Godang, R., Gogota, O., Goldenzweig, P., Gradl, W., Granderath, S., Graziani, E., Gruberová, Z., Guan, Y., Gudkova, K., Haide, I., Han, Y., Hara, T., Hayashii, H., Hazra, S., Hearty, C., Heidelbach, A., de la Cruz, I. Heredia, Villanueva, M. Hernández, Higuchi, T., Hoek, M., Hohmann, M., Hoppe, R., Horak, P., Hsu, C. -L., Humair, T., Iijima, T., Inami, K., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jackson, P., Jacobs, W. W., Jang, E. -J., Jia, S., Jin, Y., Johnson, A., Joo, K. K., Junkerkalefeld, H., Kalita, D., Kandra, J., Kang, K. H., Kang, S., Kawasaki, T., Keil, F., Ketter, C., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, J. -Y., Kim, K. -H., Kim, Y. -K., Kim, Y. J., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Korpar, S., Kovalenko, E., Kowalewski, R., Križan, P., Krokovny, P., Kuhr, T., Kulii, Y., Kumar, D., Kumar, R., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lai, Y. -T., Lalwani, K., Lam, T., Lau, T. S., Laurenza, M., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Lemettais, C., Leo, P., Li, L. K., Li, Q. M., Li, W. Z., Li, Y., Li, Y. B., Liao, Y. P., Libby, J., Lin, J., Liu, M. H., Liu, Q. Y., Liu, Y., Liu, Z. Q., Liventsev, D., Longo, S., Lueck, T., Lyu, C., Maggiora, M., Maharana, S. P., Maiti, R., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martellini, C., Martens, A., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Maurya, S. K., McKenna, J. A., Mehta, R., Meier, F., Merola, M., Miller, C., Mirra, M., Mitra, S., Miyabayashi, K., Mohanty, G. B., Mondal, S., Moneta, S., Moser, H. -G., Mussa, R., Nakamura, I., Nakao, M., Nakazawa, Y., Naruki, M., Natkaniec, Z., Natochii, A., Nayak, M., Nazaryan, G., Neu, M., Nishida, S., Ogawa, S., Ono, H., Onuki, Y., Otani, F., Pakhlov, P., Pakhlova, G., Paoloni, E., Pardi, S., Park, H., Park, J., Park, K., Park, S. -H., Paschen, B., Passeri, A., Pedlar, T. K., Peruzzi, I., Peschke, R., Pestotnik, R., Piccolo, M., Piilonen, L. E., Podobnik, T., Pokharel, S., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Prudiiev, I., Purwar, H., Rados, P., Raeuber, G., Raiz, S., Rauls, N., Reif, M., Reiter, S., Remnev, M., Reuter, L., Ripp-Baudot, I., Rizzo, G., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Sanders, D. A., Sandilya, S., Santelj, L., Savinov, V., Scavino, B., Schmitt, C., Schneider, S., Schnepf, M., Schoenning, K., Schwanda, C., Schwartz, A. J., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Sharma, C., Shen, C. P., Shi, X. D., Shillington, T., Shimasaki, T., Shiu, J. -G., Shtol, D., Shwartz, B., Sibidanov, A., Simon, F., Singh, J. B., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Spataro, S., Spruck, B., Song, W., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Strube, J., Sue, Y., Sumihama, M., Sumisawa, K., Sutcliffe, W., Suwonjandee, N., Svidras, H., Takahashi, M., Takizawa, M., Tamponi, U., Tanida, K., Tenchini, F., Thaller, A., Tittel, O., Tiwary, R., Torassa, E., Trabelsi, K., Tsaklidis, I., Uchida, M., Ueda, I., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Ushiroda, Y., Vahsen, S. E., van Tonder, R., Veronesi, M., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Wakai, M., Wallner, S., Wang, M. -Z., Wang, X. L., Wang, Z., Warburton, A., Watanuki, S., Wessel, C., Won, E., Xu, X. P., Yabsley, B. D., Yamada, S., Yan, W., Yelton, J., Yin, J. H., Yoshihara, K., Yusa, Y., Zani, L., Zeng, F., Zhang, B., Zhilich, V., Zhou, J. S., Zhou, Q. D., Zhukova, V. I., Žlebčík, R.
We present a measurement of the branching fraction and time-dependent charge-parity ($CP$) decay-rate asymmetries in $B^0 \to J/\psi \pi^0$ decays. The data sample was collected with the Belle~II detector at the SuperKEKB asymmetric $e^+e^-$ collider
Externí odkaz:
http://arxiv.org/abs/2410.08622
Autor:
Mihalcea, Rada, Ignat, Oana, Bai, Longju, Borah, Angana, Chiruzzo, Luis, Jin, Zhijing, Kwizera, Claude, Nwatu, Joan, Poria, Soujanya, Solorio, Thamar
This paper presents a vision for creating AI systems that are inclusive at every stage of development, from data collection to model design and evaluation. We address key limitations in the current AI pipeline and its WEIRD representation, such as la
Externí odkaz:
http://arxiv.org/abs/2410.16315
Autor:
Borah, Angana, Mihalcea, Rada
As Large Language Models (LLMs) continue to evolve, they are increasingly being employed in numerous studies to simulate societies and execute diverse social tasks. However, LLMs are susceptible to societal biases due to their exposure to human-gener
Externí odkaz:
http://arxiv.org/abs/2410.02584
Dark matter (DM), in spite of being stable or long-lived on cosmological scales, can decay in the early Universe due to finite-temperature effects. In particular, a first order phase transition (FOPT) in the early Universe can provide a finite window
Externí odkaz:
http://arxiv.org/abs/2410.00096
Large Deep Learning models are compressed and deployed for specific applications. However, current Deep Learning model compression methods do not utilize the information about the target application. As a result, the compressed models are application
Externí odkaz:
http://arxiv.org/abs/2409.05368