Zobrazeno 1 - 10
of 1 306
pro vyhledávání: '"P. Biberthaler"'
Autor:
Olivia Mair, Jan Neumann, Philipp Rittstieg, Michael Müller, Peter Biberthaler, Marc Hanschen
Publikováno v:
BMC Geriatrics, Vol 24, Iss 1, Pp 1-9 (2024)
Abstract Background Fragility fractures of the pelvis (FFPs) represent a significant health burden, particularly for the elderly. The role of sarcopenia, an age-related loss of muscle mass and function, in the development and impact of these fracture
Externí odkaz:
https://doaj.org/article/46be5ce59412416da617a400317c3861
Autor:
Vincent Sapin, Javier de la Cruz, Alfonso Lagares, Odile Mejan, Vladislav Pavlov, François Dubos, Christèle Gras-Le-Guen, Anne Chauvire-Drouard, Fleur Lorton, María Antonia Poca, Thibault de Groc, Belén Rivero, Rocío Rodrigo, Peter Biberthaler, Noelia Montoya, Paula Duch, Aasma Sahuquillo, Pauline Scherdel, Markus Lehner, Lydie Abaléa, Aymeric Cantais, Véronique Chasle, Marie-Amélie Chêne, Béatrice De Pracontal, Alban Laspougeas, Ophélia Le Gentil, Hélène Liénard, Juliette Massot, Cédric Ménager, Sidney Passat, Nadia Savy, Gaelle Tourniaire, Serafín Alonso, Eva Andreu, Montserrat Feliu, Sandra Galve, Francisca Munar, Cristina Muro, Elena Vilardell, Iván Valverde, Sonia Cañadas, Sebastià González, Esther Lera, Olalla Rodríguez, Mónica Sancosmed, Núria Wörner, Pablo Martín Munarriz, Javier Saceda, Hannah Luz
Publikováno v:
BMJ Open, Vol 14, Iss 5 (2024)
Introduction In light of the burden of traumatic brain injury (TBI) in children and the excessive number of unnecessary CT scans still being performed, new strategies are needed to limit their use while minimising the risk of delayed diagnosis of int
Externí odkaz:
https://doaj.org/article/4194c940386b4948bfee80e3a4507528
Autor:
Sebastian Pesch, Frederik Greve, Michael Zyskowski, Michael Müller, Moritz Crönlein, Peter Biberthaler, Chlodwig Kirchhoff, Markus Wurm
Publikováno v:
European Journal of Medical Research, Vol 28, Iss 1, Pp 1-8 (2023)
Abstract Background Patella fractures are relatively rare fractures and only little is known about the postoperative return to sports after patella fractures. Methods This retrospective study presents information on functional outcome after operative
Externí odkaz:
https://doaj.org/article/5a7b9d92461c408b9fb916d8650f67bf
Autor:
Johannes D Bastian, Silviya Ivanova, Ahmed Mabrouk, Peter Biberthaler, Pedro Caba-Doussoux, Nikolaos K Kanakaris
Publikováno v:
EFORT Open Reviews, Vol 8, Iss 9, Pp 698-707 (2023)
Segmental femoral fractures represent a rare but complex clinical challenge. They mostly result from high-energy mechanisms, dictate a careful initial assessment and are managed with various techniques. These often include an initial phase of damage
Externí odkaz:
https://doaj.org/article/63188f1a96ff4ef9b437ba90f649b2a9
Autor:
Jiménez-Sánchez, Amelia, Mateus, Diana, Kirchhoff, Sonja, Kirchhoff, Chlodwig, Biberthaler, Peter, Navab, Nassir, Ballester, Miguel A. González, Piella, Gemma
An adequate classification of proximal femur fractures from X-ray images is crucial for the treatment choice and the patients' clinical outcome. We rely on the commonly used AO system, which describes a hierarchical knowledge tree classifying the ima
Externí odkaz:
http://arxiv.org/abs/2007.16102
Autor:
Jiménez-Sánchez, Amelia, Mateus, Diana, Kirchhoff, Sonja, Kirchhoff, Chlodwig, Biberthaler, Peter, Navab, Nassir, Ballester, Miguel A. González, Piella, Gemma
Current deep-learning based methods do not easily integrate to clinical protocols, neither take full advantage of medical knowledge. In this work, we propose and compare several strategies relying on curriculum learning, to support the classification
Externí odkaz:
http://arxiv.org/abs/2004.00482
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jiménez-Sánchez, Amelia, Kazi, Anees, Albarqouni, Shadi, Kirchhoff, Chlodwig, Biberthaler, Peter, Navab, Nassir, Kirchhoff, Sonja, Mateus, Diana
We demonstrate the feasibility of a fully automatic computer-aided diagnosis (CAD) tool, based on deep learning, that localizes and classifies proximal femur fractures on X-ray images according to the AO classification. The proposed framework aims to
Externí odkaz:
http://arxiv.org/abs/1902.01338
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.