Zobrazeno 1 - 10
of 20 840
pro vyhledávání: '"P. Bharath"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Detecting mitigating and correcting errors in quantum control is among the most pertinent contemporary problems in quantum technologies. We consider three of the most common bosonic error correction codes -- the CLY, binomial and dual rail and compar
Externí odkaz:
http://arxiv.org/abs/2411.03458
Autor:
Yale, Christopher G., Rines, Rich, Omole, Victory, Thotakura, Bharath, Burch, Ashlyn D., Chow, Matthew N. H., Ivory, Megan, Lobser, Daniel, McFarland, Brian K., Revelle, Melissa C., Clark, Susan M., Gokhale, Pranav
State-of-the-art noisy-intermediate-scale quantum (NISQ) processors are currently implemented across a variety of hardware platforms, each with their own distinct gatesets. As such, circuit compilation should not only be aware of, but also deeply con
Externí odkaz:
http://arxiv.org/abs/2411.01094
The applicability domain refers to the range of data for which the prediction of the predictive model is expected to be reliable and accurate and using a model outside its applicability domain can lead to incorrect results. The ability to define the
Externí odkaz:
http://arxiv.org/abs/2411.00920
Recognition of features in satellite imagery (forests, swimming pools, etc.) depends strongly on the spatial scale of the concept and therefore the resolution of the images. This poses two challenges: Which resolution is best suited for recognizing a
Externí odkaz:
http://arxiv.org/abs/2411.00210
Autor:
Zhou, Hangyu, Kao, Chia-Hsiang, Phoo, Cheng Perng, Mall, Utkarsh, Hariharan, Bharath, Bala, Kavita
Clouds in satellite imagery pose a significant challenge for downstream applications. A major challenge in current cloud removal research is the absence of a comprehensive benchmark and a sufficiently large and diverse training dataset. To address th
Externí odkaz:
http://arxiv.org/abs/2410.23891
Class imbalance in training datasets can lead to bias and poor generalization in machine learning models. While pre-processing of training datasets can efficiently address both these issues in centralized learning environments, it is challenging to d
Externí odkaz:
http://arxiv.org/abs/2410.21192
In this study, we investigate the under-explored intervention planning aimed at disseminating accurate information within dynamic opinion networks by leveraging learning strategies. Intervention planning involves identifying key nodes (search) and ex
Externí odkaz:
http://arxiv.org/abs/2410.14091
Arterial spin labeling (ASL) magnetic resonance imaging (MRI) enables cerebral perfusion measurement, which is crucial in detecting and managing neurological issues in infants born prematurely or after perinatal complications. However, cerebral blood
Externí odkaz:
http://arxiv.org/abs/2410.19759