Zobrazeno 1 - 10
of 447
pro vyhledávání: '"P. A. Pika"'
Autor:
N. J. Speetjens, G. Hugelius, T. Gumbricht, H. Lantuit, W. R. Berghuijs, P. A. Pika, A. Poste, J. E. Vonk
Publikováno v:
Earth System Science Data, Vol 15, Pp 541-554 (2023)
The Arctic is rapidly changing. Outside the Arctic, large-sample catchment databases have transformed catchment science from focusing on local case studies to more systematic studies of watershed functioning. Here we present an integrated pan-ARctic
Externí odkaz:
https://doaj.org/article/224045fa24e24623a2edd653ad0ab706
Autor:
F. S. Freitas, P. A. Pika, S. Kasten, B. B. Jørgensen, J. Rassmann, C. Rabouille, S. Thomas, H. Sass, R. D. Pancost, S. Arndt
Publikováno v:
Biogeosciences, Vol 18, Pp 4651-4679 (2021)
Constraining the mechanisms controlling organic matter (OM) reactivity and, thus, degradation, preservation, and burial in marine sediments across spatial and temporal scales is key to understanding carbon cycling in the past, present, and future. Ho
Externí odkaz:
https://doaj.org/article/cba35039c9544807ae6baaddcf63d538
Autor:
Wright, Lucas, Muenster, Roxana Mike, Vecchione, Briana, Qu, Tianyao, Pika, Cai, Investigators, COMM/INFO 2450 Student, Metcalf, Jacob, Matias, J. Nathan
In July 2023, New York City became the first jurisdiction globally to mandate bias audits for commercial algorithmic systems, specifically for automated employment decisions systems (AEDTs) used in hiring and promotion. Local Law 144 (LL 144) require
Externí odkaz:
http://arxiv.org/abs/2406.01399
This paper tackles the scarcity of benchmarking data in disentangled auditory representation learning. We introduce SynTone, a synthetic dataset with explicit ground truth explanatory factors for evaluating disentanglement techniques. Benchmarking st
Externí odkaz:
http://arxiv.org/abs/2402.10547
Disentangled representation learning in speech processing has lagged behind other domains, largely due to the lack of datasets with annotated generative factors for robust evaluation. To address this, we propose SynSpeech, a novel large-scale synthet
Externí odkaz:
http://arxiv.org/abs/2311.03389
Self-supervised learning (SSL) has emerged as a promising paradigm for learning flexible speech representations from unlabeled data. By designing pretext tasks that exploit statistical regularities, SSL models can capture useful representations that
Externí odkaz:
http://arxiv.org/abs/2309.03619
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Polyvyanyy, Artem, ter Hofstede, Arthur H. M., La Rosa, Marcello, Ouyang, Chun, Pika, Anastasiia
Organizations can benefit from the use of practices, techniques, and tools from the area of business process management. Through the focus on processes, they create process models that require management, including support for versioning, refactoring
Externí odkaz:
http://arxiv.org/abs/1909.09543
Autor:
Heider, Tristan, Gerber, Timm, Köksal, Okan, Eschbach, Markus, Młyńczak, Ewa, Lömker, Patrick, Gospodaric, Pika, Gehlmann, Mathias, Plötzing, Moritz, Pentcheva, Rossitza, Plucinski, Lukasz, Schneider, Claus M., Müller, Martina
Publikováno v:
Phys. Rev. B 106, 054424 (2022)
The electronic structure of the ferromagnetic semiconductor EuO is investigated by means of spin- and angle-resolved photoemission spectroscopy (spin-ARPES) and density functional theory. EuO exhibits unique properties of hosting both weakly-dispersi
Externí odkaz:
http://arxiv.org/abs/1809.00631