Zobrazeno 1 - 10
of 34 990
pro vyhledávání: '"P. A. Kunz"'
We study the behavior of the Hilbert-Kunz multiplicity of powers of an ideal in a local ring. In dimension two, we provide answers to some problems raised by Smirnov, and give a criterion to answer one of his questions in terms of a "Ratliff-Rush ver
Externí odkaz:
http://arxiv.org/abs/2412.07546
The main purpose of this paper is to provide formulas for the Hilbert-Kunz multiplicity of fiber products and idealization rings. We calculate the Hilbert-Kunz multiplicity of a fiber product $R \times_T S$, with $R$, $S$ and $T$ being Noetherian loc
Externí odkaz:
http://arxiv.org/abs/2405.15075
Autor:
Singh, Srishti, Srinivasan, Hema
In this paper, we explore a class of numerical semigroups initiated by Kunz and Waldi containing two coprime numbers $p < q$, which we call KW semigroups. We characterize KW numerical semigroups by their principal matrices. We present a necessary and
Externí odkaz:
http://arxiv.org/abs/2405.00331
In this paper we prove that the Watanabe-Yoshida conjecture holds up to dimension $7$. Our primary new tool is a function, $\varphi_J\left(R; z^t\right),$ that interpolates between the Hilbert-Kunz multiplicities of a base ring, $R$, and various radi
Externí odkaz:
http://arxiv.org/abs/2402.05822
A numerical semigroup is a cofinite subset of $\mathbb Z_{\ge 0}$ containing $0$ and closed under addition. Each numerical semigroup $S$ with smallest positive element $m$ corresponds to an integer point in the Kunz cone $\mathcal C_m \subseteq \math
Externí odkaz:
http://arxiv.org/abs/2401.06025
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Meng, Cheng, Mukhopadhyay, Alapan
Given ideals $I,J$ of a noetherian local ring $(R, \mathfrak m)$ such that $I+J$ is $\mathfrak m$-primary and a finitely generated $R$-module $M$, we associate an invariant of $(M,R,I,J)$ called the $h$-function. Our results on $h$-functions allow ex
Externí odkaz:
http://arxiv.org/abs/2310.10270
Autor:
Borevitz, Levi, Gomes, Tara, Ma, Jiajie, Niergarth, Harper, O'Neill, Christopher, Pocklington, Daniel, Stolk, Rosa, Wang, Jessica, Xue, Shuhang
A numerical semigroup is a cofinite subset of the non-negative integers that is closed under addition and contains 0. Each numerical semigroup $S$ with fixed smallest positive element $m$ corresponds to an integer point in a rational polyhedral cone
Externí odkaz:
http://arxiv.org/abs/2309.07793
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We derive exact finite-size corrections for the free energy $F$ of the Ising model on the ${\cal M} \times 2 {\cal N}$ square lattice with Brascamp-Kunz boundary conditions. We calculate ratios $r_p(\rho)$ of $p$th coefficients of F for the infinitel
Externí odkaz:
http://arxiv.org/abs/2303.03484