Zobrazeno 1 - 10
of 6 812
pro vyhledávání: '"P control chart"'
Autor:
Leslie Gardner, Peggy Bylund, Sarah Robbins, Emma Holler, Fereshtehossadat Shojaei, Fatemehalsadat Shojaei, Mark Seidman, Richard J. Holden, Nicole R. Fowler, Ben Zarzaur, Cristina Barboi, Malaz Boustani
Publikováno v:
Trials, Vol 25, Iss 1, Pp 1-14 (2024)
Abstract Background Clinical trial success hinges on efficient participant recruitment and retention. However, slow accrual and attrition frequently hinder progress. To address these challenges, a novel dashboard tool with control charts has been dev
Externí odkaz:
https://doaj.org/article/fbbd8e1b59f2408494e68fee4b7e99b5
Publikováno v:
Alexandria Engineering Journal, Vol 106, Iss , Pp 87-100 (2024)
The adaptive versions of charting tools are well-established statistical monitoring techniques for detecting unknown changes in the process over a range of shifts. A re-weighted adaptive CUSUM mean (RACUSUM) charting scheme has been proposed in this
Externí odkaz:
https://doaj.org/article/6e3835223970497b8ee41e1089a299f8
Autor:
Jéssica Souza, Cristiano Boccolini, Lais Baroni, Kele Belloze, Eduardo Bezerra, Marcel Pedroso, Ronaldo Fernandes Santos Alves, Eduardo Ogasawara
Publikováno v:
BMC Research Notes, Vol 17, Iss 1, Pp 1-6 (2024)
Abstract Objectives The control chart is a classic statistical technique in epidemiology for identifying trends, patterns, or alerts. One meaningful use is monitoring and tracking Infant Mortality Rates, which is a priority both domestically and for
Externí odkaz:
https://doaj.org/article/4c37a52027644a0bb03ec5c0867e1d1b
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
M. B. Saritha, R. Varadharajan
Publikováno v:
International Journal of Mathematical, Engineering and Management Sciences, Vol 9, Iss 4, Pp 835-843 (2024)
The Multivariate Exponentially Weighted Moving Average (MEWMA) control chart is an effective tool for monitoring small shifts in the mean vector of multiple correlated variables over time. The traditional MEWMA control charts are not appropriate when
Externí odkaz:
https://doaj.org/article/9d5b518dff2f4c399d561e2620102632
Autor:
Seher Malik, Muhammad Hanif, Muhammad Noor-ul-Amin, Imad Khan, Bakhtiyar Ahmad, Abdelgalal O. I. Abaker, Jumanah Ahmed Darwish
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024)
Abstract The Max-Mixed EWMA Exponentially Weighted Moving Average (MM EWMA) control chart is a statistical process control technique used for joint monitoring of the mean and variance of a process. This control chart is designed to detect small and m
Externí odkaz:
https://doaj.org/article/7000c09b521941fb92a711ee5f2e60cd
Publikováno v:
Production and Manufacturing Research: An Open Access Journal, Vol 12, Iss 1 (2024)
High-dimensional data, characterized by having more attributes or variables than observations, presents unique challenges in industrial operations surveillance. Traditional multivariate control charts, like Hotelling’s [Formula: see text] chart, pe
Externí odkaz:
https://doaj.org/article/b31c948b867048e7bcebb94418fe47e5
Publikováno v:
Journal of Statistical Theory and Applications (JSTA), Vol 23, Iss 3, Pp 224-239 (2024)
Abstract The monitoring of the process relies on the average product lifetime, which adheres to the Lindley distribution and employs a truncated life test-based attribute control chart. Control limits for these charts are determined through a repetit
Externí odkaz:
https://doaj.org/article/fae4d24429f34d398a6aba24f0a229bd
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-15 (2024)
Abstract In various practical situations, the information about the process distribution is sometimes partially or completely unavailable. In these instances, practitioners prefer to use nonparametric charts as they don’t restrict the assumption of
Externí odkaz:
https://doaj.org/article/5ee4f5b6a7774044b5a7a6580e21aaf3
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-19 (2024)
Abstract Correlation diagnosis in multivariate process quality management is an important and challenging issue. In this paper, a new diagnostic method based on quality component grouping is proposed. Firstly, three theorems describing the properties
Externí odkaz:
https://doaj.org/article/32f222f13dfd4469afcd6db600724b7b