Zobrazeno 1 - 10
of 17 181
pro vyhledávání: '"P P DUBEY"'
Autor:
Dhruv, Akash, Dubey, Anshu
The emergence of foundational models and generative artificial intelligence (GenAI) is poised to transform productivity in scientific computing, especially in code development, refactoring, and translating from one programming language to another. Ho
Externí odkaz:
http://arxiv.org/abs/2410.24119
Autor:
Aalbers, J., Akerib, D. S., Musalhi, A. K. Al, Alder, F., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Baker, A., Balashov, S., Bang, J., Bargemann, J. W., Barillier, E. E., Bauer, D., Beattie, K., Benson, T., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Bishop, E., Blockinger, G. M., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Buuck, M., Carmona-Benitez, M. C., Carter, M., Chawla, A., Chen, H., Cherwinka, J. J., Chin, Y. T., Chott, N. I., Converse, M. V., Coronel, R., Cottle, A., Cox, G., Curran, D., Dahl, C. E., Darlington, I., Dave, S., David, A., Delgaudio, J., Dey, S., de Viveiros, L., Di Felice, L., Ding, C., Dobson, J. E. Y., Druszkiewicz, E., Dubey, S., Eriksen, S. R., Fan, A., Fayer, S., Fearon, N. M., Fieldhouse, N., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T. M. A., Gaitskell, R. J., Geffre, A., Genovesi, J., Ghag, C., Ghosh, A., Gibbons, R., Gokhale, S., Green, J., van der Grinten, M. G. D., Haiston, J. J., Hall, C. R., Hall, T. J., Han, S., Hartigan-O'Connor, E., Haselschwardt, S. J., Hernandez, M. A., Hertel, S. A., Heuermann, G., Homenides, G. J., Horn, M., Huang, D. Q., Hunt, D., Jacquet, E., James, R. S., Johnson, J., Kaboth, A. C., Kamaha, A. C., K., Meghna K., Khaitan, D., Khazov, A., Khurana, I., Kim, J., Kim, Y. D., Kingston, J., Kirk, R., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Kudryavtsev, V. A., Lawes, C., Leonard, D. S., Lesko, K. T., Levy, C., Lin, J., Lindote, A., Lippincott, W. H., Lopes, M. I., Lorenzon, W., Lu, C., Luitz, S., Majewski, P. A., Manalaysay, A., Mannino, R. L., Maupin, C., McCarthy, M. E., McDowell, G., McKinsey, D. N., McLaughlin, J., McLaughlin, J. B., McMonigle, R., Mizrachi, E., Monte, A., Monzani, M. E., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murdy, M., Murphy, A. St. J., Naylor, A., Nelson, H. N., Neves, F., Nguyen, A., O'Brien, C. L., Olcina, I., Oliver-Mallory, K. C., Orpwood, J., Oyulmaz, K. Y, Palladino, K. J., Palmer, J., Pannifer, N. J., Parveen, N., Patton, S. J., Penning, B., Pereira, G., Perry, E., Pershing, T., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Ritchey, E., Riyat, H. S., Rosero, R., Rushton, T., Rynders, D., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Sehr, G., Shafer, B., Shaw, S., Shutt, T., Silk, J. J., Silva, C., Sinev, G., Siniscalco, J., Smith, R., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Szydagis, M., Tiedt, D. R., Timalsina, M., Tong, Z., Tovey, D. R., Tranter, J., Trask, M., Tripathi, M., Usón, A., Vacheret, A., Vaitkus, A. C., Valentino, O., Velan, V., Wang, A., Wang, J. J., Wang, Y., Watson, J. R., Weeldreyer, L., Whitis, T. J., Wild, K., Williams, M., Wisniewski, W. J., Wolf, L., Wolfs, F. L. H., Woodford, S., Woodward, D., Wright, C. J., Xia, Q., Xu, J., Xu, Y., Yeh, M., Yeum, D., Zha, W., Zweig, E. A.
We report results of a search for nuclear recoils induced by weakly interacting massive particle (WIMP) dark matter using the LUX-ZEPLIN (LZ) two-phase xenon time projection chamber. This analysis uses a total exposure of $4.2\pm0.1$ tonne-years from
Externí odkaz:
http://arxiv.org/abs/2410.17036
We present the first linear time complexity randomized algorithms for unbiased approximation of the celebrated family of general random walk kernels (RWKs) for sparse graphs. This includes both labelled and unlabelled instances. The previous fastest
Externí odkaz:
http://arxiv.org/abs/2410.10368
Autor:
Kim, Sang Min, Kim, Byeongchan, Sehanobish, Arijit, Choromanski, Krzysztof, Shim, Dongseok, Dubey, Avinava, Oh, Min-hwan
Improving the efficiency and performance of implicit neural representations in 3D, particularly Neural Radiance Fields (NeRF) and Signed Distance Fields (SDF) is crucial for enabling their use in real-time applications. These models, while capable of
Externí odkaz:
http://arxiv.org/abs/2410.09771
Autor:
Belle II Collaboration, Adachi, I., Aggarwal, L., Ahmed, H., Aihara, H., Akopov, N., Aloisio, A., Althubiti, N., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, V., Aversano, M., Ayad, R., Babu, V., Bae, H., Baghel, N. K., Bahinipati, S., Bambade, P., Banerjee, Sw., Bansal, S., Baudot, J., Baur, A., Beaubien, A., Becherer, F., Becker, J., Bennett, J. V., Bernlochner, F. U., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhardwaj, V., Bianchi, F., Bilka, T., Biswas, D., Bobrov, A., Bodrov, D., Bondar, A., Borah, J., Boschetti, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campagna, Q., Campajola, M., Cao, L., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Chang, P., Cheaib, R., Cheema, P., Chen, C., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., De La Cruz-Burelo, E., De La Motte, S. A., De Nardo, G., De Pietro, G., de Sangro, R., Destefanis, M., Dhamija, R., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Dong, T. V., Dorigo, M., Dubey, S., Dugic, K., Dujany, G., Ecker, P., Epifanov, D., Feichtinger, P., Ferber, T., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Garg, R., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Gironella, P., Glazov, A., Gobbo, B., Godang, R., Gogota, O., Goldenzweig, P., Gradl, W., Granderath, S., Graziani, E., Gruberová, Z., Guan, Y., Gudkova, K., Haide, I., Han, Y., Hara, T., Hayashii, H., Hazra, S., Hearty, C., Heidelbach, A., de la Cruz, I. Heredia, Villanueva, M. Hernández, Higuchi, T., Hoek, M., Hohmann, M., Hoppe, R., Horak, P., Hsu, C. -L., Humair, T., Iijima, T., Inami, K., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jackson, P., Jacobs, W. W., Jang, E. -J., Jia, S., Jin, Y., Johnson, A., Joo, K. K., Junkerkalefeld, H., Kalita, D., Kandra, J., Kang, K. H., Kang, S., Kawasaki, T., Keil, F., Ketter, C., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, J. -Y., Kim, K. -H., Kim, Y. -K., Kim, Y. J., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Korpar, S., Kovalenko, E., Kowalewski, R., Križan, P., Krokovny, P., Kuhr, T., Kulii, Y., Kumar, D., Kumar, R., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lai, Y. -T., Lalwani, K., Lam, T., Lau, T. S., Laurenza, M., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Lemettais, C., Leo, P., Li, L. K., Li, Q. M., Li, W. Z., Li, Y., Li, Y. B., Liao, Y. P., Libby, J., Lin, J., Liu, M. H., Liu, Q. Y., Liu, Y., Liu, Z. Q., Liventsev, D., Longo, S., Lueck, T., Lyu, C., Maggiora, M., Maharana, S. P., Maiti, R., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martellini, C., Martens, A., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Maurya, S. K., McKenna, J. A., Mehta, R., Meier, F., Merola, M., Miller, C., Mirra, M., Mitra, S., Miyabayashi, K., Mohanty, G. B., Mondal, S., Moneta, S., Moser, H. -G., Mussa, R., Nakamura, I., Nakao, M., Nakazawa, Y., Naruki, M., Natkaniec, Z., Natochii, A., Nayak, M., Nazaryan, G., Neu, M., Nishida, S., Ogawa, S., Ono, H., Onuki, Y., Otani, F., Pakhlov, P., Pakhlova, G., Paoloni, E., Pardi, S., Park, H., Park, J., Park, K., Park, S. -H., Paschen, B., Passeri, A., Pedlar, T. K., Peruzzi, I., Peschke, R., Pestotnik, R., Piccolo, M., Piilonen, L. E., Podobnik, T., Pokharel, S., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Prudiiev, I., Purwar, H., Rados, P., Raeuber, G., Raiz, S., Rauls, N., Reif, M., Reiter, S., Remnev, M., Reuter, L., Ripp-Baudot, I., Rizzo, G., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Sanders, D. A., Sandilya, S., Santelj, L., Savinov, V., Scavino, B., Schmitt, C., Schneider, S., Schnepf, M., Schoenning, K., Schwanda, C., Schwartz, A. J., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Sharma, C., Shen, C. P., Shi, X. D., Shillington, T., Shimasaki, T., Shiu, J. -G., Shtol, D., Shwartz, B., Sibidanov, A., Simon, F., Singh, J. B., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Spataro, S., Spruck, B., Song, W., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Strube, J., Sue, Y., Sumihama, M., Sumisawa, K., Sutcliffe, W., Suwonjandee, N., Svidras, H., Takahashi, M., Takizawa, M., Tamponi, U., Tanida, K., Tenchini, F., Thaller, A., Tittel, O., Tiwary, R., Torassa, E., Trabelsi, K., Tsaklidis, I., Uchida, M., Ueda, I., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Ushiroda, Y., Vahsen, S. E., van Tonder, R., Veronesi, M., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Wakai, M., Wallner, S., Wang, M. -Z., Wang, X. L., Wang, Z., Warburton, A., Watanuki, S., Wessel, C., Won, E., Xu, X. P., Yabsley, B. D., Yamada, S., Yan, W., Yelton, J., Yin, J. H., Yoshihara, K., Yusa, Y., Zani, L., Zeng, F., Zhang, B., Zhilich, V., Zhou, J. S., Zhou, Q. D., Zhukova, V. I., Žlebčík, R.
We present a measurement of the branching fraction and time-dependent charge-parity ($CP$) decay-rate asymmetries in $B^0 \to J/\psi \pi^0$ decays. The data sample was collected with the Belle~II detector at the SuperKEKB asymmetric $e^+e^-$ collider
Externí odkaz:
http://arxiv.org/abs/2410.08622
Autor:
Reid, Isaac, Dubey, Kumar Avinava, Jain, Deepali, Whitney, Will, Ahmed, Amr, Ainslie, Joshua, Bewley, Alex, Jacob, Mithun, Mehta, Aranyak, Rendleman, David, Schenck, Connor, Turner, Richard E., Wagner, René, Weller, Adrian, Choromanski, Krzysztof
When training transformers on graph-structured data, incorporating information about the underlying topology is crucial for good performance. Topological masking, a type of relative position encoding, achieves this by upweighting or downweighting att
Externí odkaz:
http://arxiv.org/abs/2410.03462
Autor:
Prajapati, Gulloo Lal, Ray, Sujay, Ilyakov, Igor, Ponomaryov, Alexey N., Arshad, Atiqa, de Oliveira, Thales V. A. G., Dubey, Gaurav, Rana, Dhanvir Singh, Deinert, Jan-Christoph, Werner, Philipp, Kovalev, Sergey
We demonstrate terahertz (THz) harmonic generation across the Mott insulator-metal transition in rare-earth nickelates (RNiO$_3$, R = rare-earth atom). The THz harmonic generation is observed in all the three different phases with distinct behaviors:
Externí odkaz:
http://arxiv.org/abs/2410.01424
Autor:
Belle, Collaborations, Belle II, Aggarwal, L., Ahmed, H., Aihara, H., Akopov, N., Aloisio, A., Althubiti, N., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, V., Aversano, M., Ayad, R., Babu, V., Bae, H., Baghel, N. K., Bahinipati, S., Bambade, P., Banerjee, Sw., Baudot, J., Baur, A., Beaubien, A., Becherer, F., Becker, J., Bennett, J. V., Bernlochner, F. U., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhardwaj, V., Bianchi, F., Bilka, T., Biswas, D., Bobrov, A., Bodrov, D., Boschetti, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campajola, M., Cao, L., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Chang, P., Cheema, P., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., De La Cruz-Burelo, E., De La Motte, S. A., De Nardo, G., De Pietro, G., de Sangro, R., Destefanis, M., Dhamija, R., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Dong, T. V., Dorigo, M., Dubey, S., Dugic, K., Dujany, G., Ecker, P., Epifanov, D., Eppelt, J., Feichtinger, P., Ferber, T., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Garg, R., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Gironell, P. Gironella, Gobbo, B., Godang, R., Gogota, O., Goldenzweig, P., Gradl, W., Graziani, E., Gruberová, Z., Guan, Y., Gudkova, K., Haide, I., Han, Y., Hara, T., Hayashii, H., Hazra, S., Hearty, C., Heidelbach, A., de la Cruz, I. Heredia, Higuchi, T., Hoek, M., Hohmann, M., Hoppe, R., Horak, P., Hsu, C. -L., Humair, T., Iijima, T., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jackson, P., Jacobs, W. W., Jang, E. -J., Ji, Q. P., Jia, S., Jin, Y., Johnson, A., Joo, K. K., Junkerkalefeld, H., Kandra, J., Kang, K. H., Kang, S., Karyan, G., Kawasaki, T., Keil, F., Ketter, C., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, J. -Y., Kim, K. -H., Kim, Y. -K., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Korpar, S., Kovalenko, E., Kowalewski, R., Križan, P., Krokovny, P., Kuhr, T., Kulii, Y., Kumar, R., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lai, Y. -T., Lalwani, K., Lam, T., Lau, T. S., Laurenza, M., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Lemettais, C., Leo, P., Li, C., Li, L. K., Li, Q. M., Li, W. Z., Li, Y., Li, Y. B., Liao, Y. P., Libby, J., Lin, J., Liu, M. H., Liu, Q. Y., Liu, Y., Liu, Z. Q., Liventsev, D., Longo, S., Lueck, T., Lyu, C., Maggiora, M., Maharana, S. P., Maiti, R., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martellini, C., Martens, A., Martini, A., Martinov, T., Massaccesi, L., Maurya, S. K., McKenna, J. A., Mehta, R., Meier, F., Merola, M., Miller, C., Mirra, M., Mitra, S., Mondal, S., Moneta, S., Moser, H. -G., Nakamura, I., Nakao, M., Naruki, M., Natkaniec, Z., Natochii, A., Nayak, M., Nazaryan, G., Neu, M., Nishida, S., Ogawa, S., Ono, H., Otani, F., Oxford, E. R., Pakhlova, G., Paoloni, E., Pardi, S., Park, H., Park, J., Park, K., Park, S. -H., Passeri, A., Pedlar, T. K., Peruzzi, I., Pestotnik, R., Piccolo, M., Piilonen, L. E., Podobnik, T., Pokharel, S., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Prudiiev, I., Purwar, H., Rados, P., Raeuber, G., Raiz, S., Rauls, N., Reif, M., Reiter, S., Remnev, M., Reuter, L., Ripp-Baudot, I., Rizzo, G., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Sakai, Y., Sanders, D. A., Sandilya, S., Santelj, L., Savinov, V., Scavino, B., Schneider, S., Schnepf, M., Schwanda, C., Schwartz, A. J., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Sharma, C., Shi, X. D., Shillington, T., Shimasaki, T., Shiu, J. -G., Shtol, D., Shwartz, B., Sibidanov, A., Simon, F., Singh, J. B., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Spataro, S., Spruck, B., Song, W., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Strube, J., Sue, Y., Sumihama, M., Sumisawa, K., Sutcliffe, W., Suwonjandee, N., Svidras, H., Takizawa, M., Tamponi, U., Tanida, K., Tenchini, F., Thaller, A., Tittel, O., Tiwary, R., Torassa, E., Trabelsi, K., Tsaklidis, I., Ueda, I., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Vahsen, S. E., van Tonder, R., Veronesi, M., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Wakai, M., Wallner, S., Wang, M. -Z., Wang, X. L., Wang, Z., Warburton, A., Watanuki, S., Wessel, C., Xu, X. P., Yabsley, B. D., Yamada, S., Yan, W., Yelton, J., Yin, J. H., Yuan, C. Z., Zani, L., Zeng, F., Zhou, J. S., Zhou, Q. D., Zhukova, V. I., Žlebčík, R.
We perform the first search for $C\!P$ violation in ${D_{(s)}^{+}\to{}K_{S}^{0}K^{-}\pi^{+}\pi^{+}}$ decays. We use a combined data set from the Belle and Belle II experiments, which study $e^+e^-$ collisions at center-of-mass energies at or near the
Externí odkaz:
http://arxiv.org/abs/2409.15777
Autor:
Atif, Mohammad, Dubey, Pulkit, Aghor, Pratik P., Lopez-Marrero, Vanessa, Zhang, Tao, Sharfuddin, Abdullah, Yu, Kwangmin, Yang, Fan, Ladeinde, Foluso, Liu, Yangang, Lin, Meifeng, Li, Lingda
High-fidelity direct numerical simulation of turbulent flows for most real-world applications remains an outstanding computational challenge. Several machine learning approaches have recently been proposed to alleviate the computational cost even tho
Externí odkaz:
http://arxiv.org/abs/2409.14660
Autor:
Mekala, Anmol, Dorna, Vineeth, Dubey, Shreya, Lalwani, Abhishek, Koleczek, David, Rungta, Mukund, Hasan, Sadid, Lobo, Elita
Machine unlearning aims to efficiently eliminate the influence of specific training data, known as the forget set, from the model. However, existing unlearning methods for Large Language Models (LLMs) face a critical challenge: they rely solely on ne
Externí odkaz:
http://arxiv.org/abs/2409.13474