Zobrazeno 1 - 10
of 677
pro vyhledávání: '"P LYNA"'
Autor:
Liu, Yifei, Wen, Jicheng, Wang, Yang, Ye, Shengyu, Zhang, Li Lyna, Cao, Ting, Li, Cheng, Yang, Mao
Scaling model size significantly challenges the deployment and inference of Large Language Models (LLMs). Due to the redundancy in LLM weights, recent research has focused on pushing weight-only quantization to extremely low-bit (even down to 2 bits)
Externí odkaz:
http://arxiv.org/abs/2409.17066
This paper introduces rStar, a self-play mutual reasoning approach that significantly improves reasoning capabilities of small language models (SLMs) without fine-tuning or superior models. rStar decouples reasoning into a self-play mutual generation
Externí odkaz:
http://arxiv.org/abs/2408.06195
Autor:
Amaro, Rommie, Åqvist, Johan, Bahar, Ivet, Battistini, Federica, Bellaiche, Adam, Beltran, Daniel, Biggin, Philip C., Bonomi, Massimiliano, Bowman, Gregory R., Bryce, Richard, Bussi, Giovanni, Carloni, Paolo, Case, David, Cavalli, Andrea, Chang, Chie-En A., Cheatham III, Thomas E., Cheung, Margaret S., Chipot, Cris, Chong, Lillian T., Choudhary, Preeti, Cisneros, Gerardo Andres, Clementi, Cecilia, Collepardo-Guevara, Rosana, Coveney, Peter, Covino, Roberto, Crawford, T. Daniel, Peraro, Matteo Dal, de Groot, Bert, Delemotte, Lucie, De Vivo, Marco, Essex, Jonathan, Fraternali, Franca, Gao, Jiali, Gelpí, Josep Lluís, Gervasio, Francesco Luigi, Gonzalez-Nilo, Fernando Danilo, Grubmüller, Helmut, Guenza, Marina, Guzman, Horacio V., Harris, Sarah, Head-Gordon, Teresa, Hernandez, Rigoberto, Hospital, Adam, Huang, Niu, Huang, Xuhui, Hummer, Gerhard, Iglesias-Fernández, Javier, Jensen, Jan H., Jha, Shantenu, Jiao, Wanting, Jorgensen, William L., Kamerlin, Shina Caroline Lynn, Khalid, Syma, Laughton, Charles, Levitt, Michael, Limongelli, Vittorio, Lindahl, Erik, Lindorff-Larsen, Kresten, Loverde, Sharon, Lundborg, Magnus, Luo, Yun Lyna, Luque, Francisco Javier, Lynch, Charlotte I., MacKerell, Alexander, Magistrato, Alessandra, Marrink, Siewert J., Martin, Hugh, McCammon, J. Andrew, Merz, Kenneth, Moliner, Vicent, Mulholland, Adrian, Murad, Sohail, Naganathan, Athi N., Nangia, Shikha, Noe, Frank, Noy, Agnes, Oláh, Julianna, O'Mara, Megan, Ondrechen, Mary Jo, Onuchic, José N., Onufriev, Alexey, Osuna, Silvia, Panchenko, Anna R., Pantano, Sergio, Parish, Carol, Parrinello, Michele, Perez, Alberto, Perez-Acle, Tomas, Perilla, Juan R., Pettitt, B. Montgomery, Pietropalo, Adriana, Piquemal, Jean-Philip, Poma, Adolfo, Praprotnik, Matej, Ramos, Maria J., Ren, Pengyu, Reuter, Nathalie, Roitberg, Adrian, Rosta, Edina, Rovira, Carme, Roux, Benoit, Röthlisberger, Ursula, Sanbonmatsu, Karissa Y., Schlick, Tamar, Shaytan, Alexey K., Simmerling, Carlos, Smith, Jeremy C., Sugita, Yuji, Świderek, Katarzyna, Taiji, Makoto, Tao, Peng, Tikhonova, Irina G., Tirado-Rives, Julian, Tunón, Inaki, Van Der Kamp, Marc W., Van der Spoel, David, Velankar, Sameer, Voth, Gregory A., Wade, Rebecca, Warshel, Ariel, Welborn, Valerie Vaissier, Wetmore, Stacey, Wong, Chung F., Yang, Lee-Wei, Zacharias, Martin, Orozco, Modesto
This letter illustrates the opinion of the molecular dynamics (MD) community on the need to adopt a new FAIR paradigm for the use of molecular simulations. It highlights the necessity of a collaborative effort to create, establish, and sustain a data
Externí odkaz:
http://arxiv.org/abs/2407.16584
Autor:
Abdin, Marah, Aneja, Jyoti, Awadalla, Hany, Awadallah, Ahmed, Awan, Ammar Ahmad, Bach, Nguyen, Bahree, Amit, Bakhtiari, Arash, Bao, Jianmin, Behl, Harkirat, Benhaim, Alon, Bilenko, Misha, Bjorck, Johan, Bubeck, Sébastien, Cai, Martin, Cai, Qin, Chaudhary, Vishrav, Chen, Dong, Chen, Dongdong, Chen, Weizhu, Chen, Yen-Chun, Chen, Yi-Ling, Cheng, Hao, Chopra, Parul, Dai, Xiyang, Dixon, Matthew, Eldan, Ronen, Fragoso, Victor, Gao, Jianfeng, Gao, Mei, Gao, Min, Garg, Amit, Del Giorno, Allie, Goswami, Abhishek, Gunasekar, Suriya, Haider, Emman, Hao, Junheng, Hewett, Russell J., Hu, Wenxiang, Huynh, Jamie, Iter, Dan, Jacobs, Sam Ade, Javaheripi, Mojan, Jin, Xin, Karampatziakis, Nikos, Kauffmann, Piero, Khademi, Mahoud, Kim, Dongwoo, Kim, Young Jin, Kurilenko, Lev, Lee, James R., Lee, Yin Tat, Li, Yuanzhi, Li, Yunsheng, Liang, Chen, Liden, Lars, Lin, Xihui, Lin, Zeqi, Liu, Ce, Liu, Liyuan, Liu, Mengchen, Liu, Weishung, Liu, Xiaodong, Luo, Chong, Madan, Piyush, Mahmoudzadeh, Ali, Majercak, David, Mazzola, Matt, Mendes, Caio César Teodoro, Mitra, Arindam, Modi, Hardik, Nguyen, Anh, Norick, Brandon, Patra, Barun, Perez-Becker, Daniel, Portet, Thomas, Pryzant, Reid, Qin, Heyang, Radmilac, Marko, Ren, Liliang, de Rosa, Gustavo, Rosset, Corby, Roy, Sambudha, Ruwase, Olatunji, Saarikivi, Olli, Saied, Amin, Salim, Adil, Santacroce, Michael, Shah, Shital, Shang, Ning, Sharma, Hiteshi, Shen, Yelong, Shukla, Swadheen, Song, Xia, Tanaka, Masahiro, Tupini, Andrea, Vaddamanu, Praneetha, Wang, Chunyu, Wang, Guanhua, Wang, Lijuan, Wang, Shuohang, Wang, Xin, Wang, Yu, Ward, Rachel, Wen, Wen, Witte, Philipp, Wu, Haiping, Wu, Xiaoxia, Wyatt, Michael, Xiao, Bin, Xu, Can, Xu, Jiahang, Xu, Weijian, Xue, Jilong, Yadav, Sonali, Yang, Fan, Yang, Jianwei, Yang, Yifan, Yang, Ziyi, Yu, Donghan, Yuan, Lu, Zhang, Chenruidong, Zhang, Cyril, Zhang, Jianwen, Zhang, Li Lyna, Zhang, Yi, Zhang, Yue, Zhang, Yunan, Zhou, Xiren
We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi
Externí odkaz:
http://arxiv.org/abs/2404.14219
Autor:
Ding, Yiran, Zhang, Li Lyna, Zhang, Chengruidong, Xu, Yuanyuan, Shang, Ning, Xu, Jiahang, Yang, Fan, Yang, Mao
Large context window is a desirable feature in large language models (LLMs). However, due to high fine-tuning costs, scarcity of long texts, and catastrophic values introduced by new token positions, current extended context windows are limited to ar
Externí odkaz:
http://arxiv.org/abs/2402.13753
Autor:
Chaudhry, Muhammad Ahmed, Kim, Lyna, Irvin, Jeremy, Ido, Yuzu, Chu, Sonia, Isobe, Jared Thomas, Ng, Andrew Y., Watson-Parris, Duncan
Clouds play a significant role in global temperature regulation through their effect on planetary albedo. Anthropogenic emissions of aerosols can alter the albedo of clouds, but the extent of this effect, and its consequent impact on temperature chan
Externí odkaz:
http://arxiv.org/abs/2401.14486
Large Language Models (LLMs) have shown impressive capabilities, yet they still struggle with math reasoning. In this work, we propose CoT-Influx, a novel approach that pushes the boundary of few-shot Chain-of-Thoughts (CoT) learning to improve LLM m
Externí odkaz:
http://arxiv.org/abs/2312.08901
Despite the remarkable success of Large Language Models (LLMs), the massive size poses significant deployment challenges, particularly on resource-constrained hardware. While existing LLM compression methods focus on quantization, pruning remains rel
Externí odkaz:
http://arxiv.org/abs/2310.05015
Autor:
Elise Jirovec, Dafne C. A. Quixabeira, James H. A. Clubb, Santeri A. Pakola, Tatiana Kudling, Victor Arias, Lyna Haybout, Katriina Jalkanen, Tuomo Alanko, Tine Monberg, Amir Khammari, Brigitte Dreno, Inge Marie Svane, Matthew S. Block, Daniel A. Adamo, Johanna Mäenpää, Claudia Kistler, Suvi Sorsa, Otto Hemminki, Anna Kanerva, João M. Santos, Victor Cervera-Carrascon, Akseli Hemminki
Publikováno v:
Journal of Experimental & Clinical Cancer Research, Vol 43, Iss 1, Pp 1-15 (2024)
Abstract Background A limitation of approved oncolytic viruses is their requirement for intratumoral (i.t.) injection. TILT-123 (igrelimogene litadenorepvec, Ad5/3-E2F-D24-hTNFα-IRES-hIL-2) is a chimeric oncolytic adenovirus suitable for intravenous
Externí odkaz:
https://doaj.org/article/45e8bf709efc4b58a91d86132c2c2011
Autor:
Li, Junyan, Zhang, Li Lyna, Xu, Jiahang, Wang, Yujing, Yan, Shaoguang, Xia, Yunqing, Yang, Yuqing, Cao, Ting, Sun, Hao, Deng, Weiwei, Zhang, Qi, Yang, Mao
Deploying pre-trained transformer models like BERT on downstream tasks in resource-constrained scenarios is challenging due to their high inference cost, which grows rapidly with input sequence length. In this work, we propose a constraint-aware and
Externí odkaz:
http://arxiv.org/abs/2306.14393