Zobrazeno 1 - 10
of 14
pro vyhledávání: '"P H, Kauffman"'
Publikováno v:
Symmetry, Vol 16, Iss 3, p 316 (2024)
We generalize Koopman–von Neumann classical mechanics to poly symplectic fields and recover De Donder–Weyl’s theory. Compared with Dirac’s Hamiltonian density, it inspires a new Hamiltonian formulation with a canonical momentum field that is
Externí odkaz:
https://doaj.org/article/a47ab55f3fae4983b1fd7735cb868a27
Autor:
Louis H. Kauffman
Publikováno v:
Computation, Vol 11, Iss 12, p 247 (2023)
This paper explores a formal model of autopoiesis as presented by Maturana, Uribe and Varela, and analyzes this model and its implications through the lens of the notions of eigenforms (fixed points) and the intricacies of Goedelian coding. The paper
Externí odkaz:
https://doaj.org/article/9560859b0b9c4a7e93ab9fc13db97eaa
Publikováno v:
Symmetry, Vol 14, Iss 8, p 1724 (2022)
In this paper, we study knotoids with extra graphical structure (bonded knotoids) in the settings of rigid vertex and topological vertex graphs. We construct bonded knotoid invariants by applying tangle insertion and unplugging at bonding sites of a
Externí odkaz:
https://doaj.org/article/29340f568fa843ebbe21ed13b53963a9
Autor:
Louis H. Kauffman
Publikováno v:
Symmetry, Vol 14, Iss 3, p 430 (2022)
This paper shows how gauge theoretic structures arise in a noncommutative calculus where the derivations are generated by commutators. These patterns include Hamilton’s equations, the structure of the Levi–Civita connection, and generalizations o
Externí odkaz:
https://doaj.org/article/c635241b2c3448d88e2b2fe7e7cfd2c9
Autor:
Louis H. Kauffman
Publikováno v:
She Ji: The Journal of Design, Economics and Innovation, Vol 5, Iss 4, Pp 355-357 (2019)
This short essay is a commentary on the article by Michael Lissack, and it provides a point of view. In this point of view it is seen that while one can admit that the channel capacity for human observers is limited, it is exactly this limitation tha
Externí odkaz:
https://doaj.org/article/bef41023a7ce439fb282c4b18ca9dcb6
Autor:
Louis H. Kauffman
Publikováno v:
Symmetry, Vol 13, Iss 8, p 1373 (2021)
This paper explains a method of constructing algebras, starting with the properties of discrimination in elementary discrete systems. We show how to use points of view about these systems to construct what we call iterant algebras and how these algeb
Externí odkaz:
https://doaj.org/article/4c0d8cabd5d543c99346a0ff7b2fe0d4
Autor:
Rukhsan Ul Haq, Louis H. Kauffman
Publikováno v:
Condensed Matter, Vol 6, Iss 1, p 11 (2021)
The Kitaev chain model exhibits topological order that manifests as topological degeneracy, Majorana edge modes and Z2 topological invariant of the bulk spectrum. This model can be obtained from a transverse field Ising model(TFIM) using the Jordan
Externí odkaz:
https://doaj.org/article/39d6be50138f46b185bb331f1d5593dd
Autor:
Louis H. Kauffman
Publikováno v:
Symmetry, Vol 4, Iss 2, Pp 276-284 (2012)
This paper details a series of experiments in searching for minimal energy configurations for knots and links using the computer program KnotPlot.
Externí odkaz:
https://doaj.org/article/bc6adb0fd5254a4ebd555a98dd35a295
Autor:
Louis H. Kauffman
Publikováno v:
Entropy, Vol 20, Iss 7, p 483 (2018)
This paper reviews results about discrete physics and non-commutative worlds and explores further the structure and consequences of constraints linking classical calculus and discrete calculus formulated via commutators. In particular, we review how
Externí odkaz:
https://doaj.org/article/50fb4ed0a13b465c90590ed42ecc7a57
Autor:
Louis H. Kauffman, Sofia Lambropoulou
Publikováno v:
Symmetry, Vol 9, Iss 10, p 226 (2017)
We present the new skein invariants of classical links, H [ H ] , K [ K ] and D [ D ] , based on the invariants of links, H, K and D, denoting the regular isotopy version of the Homflypt polynomial, the Kauffman polynomial and the Dubrovnik polynomia
Externí odkaz:
https://doaj.org/article/7642386a247c4855a1008e0d82f66c11