Zobrazeno 1 - 10
of 10 825
pro vyhledávání: '"P Fagan"'
Learning from Demonstration (LfD) is a useful paradigm for training policies that solve tasks involving complex motions, such as those encountered in robotic manipulation. In practice, the successful application of LfD requires overcoming error accum
Externí odkaz:
http://arxiv.org/abs/2409.18768
This paper addresses a challenging interactive task learning scenario we call rearrangement under unawareness: to manipulate a rigid-body environment in a context where the robot is unaware of a concept that's key to solving the instructed task. We p
Externí odkaz:
http://arxiv.org/abs/2409.17755
Autor:
de Figueiredo, Benjamin Garcia, Calabrese, Justin M., Fagan, William F., Martinez-Garcia, Ricardo
Many natural phenomena are quantified by counts of observable events, from the annihilation of quasiparticles in a lattice to predator-prey encounters on a landscape to spikes in a neural network. These events are triggered at random intervals when a
Externí odkaz:
http://arxiv.org/abs/2409.11433
Generic polyhedra are interesting mathematical objects to study in their own right. In this paper, we initialize a systematic study of two-dimensional generic polyhedra with an eye towards applications to low-dimensional topology, especially the Andr
Externí odkaz:
http://arxiv.org/abs/2406.09439
Autor:
Fagan, Frank
While most commentators have focused exclusively on how LLMs will transform day-to-day law practice, a substantial structural change could be afoot within the legal sector as a whole. Large increases in productivity and attendant cost savings could e
Externí odkaz:
http://arxiv.org/abs/2405.07826
Autor:
Khazatsky, Alexander, Pertsch, Karl, Nair, Suraj, Balakrishna, Ashwin, Dasari, Sudeep, Karamcheti, Siddharth, Nasiriany, Soroush, Srirama, Mohan Kumar, Chen, Lawrence Yunliang, Ellis, Kirsty, Fagan, Peter David, Hejna, Joey, Itkina, Masha, Lepert, Marion, Ma, Yecheng Jason, Miller, Patrick Tree, Wu, Jimmy, Belkhale, Suneel, Dass, Shivin, Ha, Huy, Jain, Arhan, Lee, Abraham, Lee, Youngwoon, Memmel, Marius, Park, Sungjae, Radosavovic, Ilija, Wang, Kaiyuan, Zhan, Albert, Black, Kevin, Chi, Cheng, Hatch, Kyle Beltran, Lin, Shan, Lu, Jingpei, Mercat, Jean, Rehman, Abdul, Sanketi, Pannag R, Sharma, Archit, Simpson, Cody, Vuong, Quan, Walke, Homer Rich, Wulfe, Blake, Xiao, Ted, Yang, Jonathan Heewon, Yavary, Arefeh, Zhao, Tony Z., Agia, Christopher, Baijal, Rohan, Castro, Mateo Guaman, Chen, Daphne, Chen, Qiuyu, Chung, Trinity, Drake, Jaimyn, Foster, Ethan Paul, Gao, Jensen, Herrera, David Antonio, Heo, Minho, Hsu, Kyle, Hu, Jiaheng, Jackson, Donovon, Le, Charlotte, Li, Yunshuang, Lin, Kevin, Lin, Roy, Ma, Zehan, Maddukuri, Abhiram, Mirchandani, Suvir, Morton, Daniel, Nguyen, Tony, O'Neill, Abigail, Scalise, Rosario, Seale, Derick, Son, Victor, Tian, Stephen, Tran, Emi, Wang, Andrew E., Wu, Yilin, Xie, Annie, Yang, Jingyun, Yin, Patrick, Zhang, Yunchu, Bastani, Osbert, Berseth, Glen, Bohg, Jeannette, Goldberg, Ken, Gupta, Abhinav, Gupta, Abhishek, Jayaraman, Dinesh, Lim, Joseph J, Malik, Jitendra, Martín-Martín, Roberto, Ramamoorthy, Subramanian, Sadigh, Dorsa, Song, Shuran, Wu, Jiajun, Yip, Michael C., Zhu, Yuke, Kollar, Thomas, Levine, Sergey, Finn, Chelsea
The creation of large, diverse, high-quality robot manipulation datasets is an important stepping stone on the path toward more capable and robust robotic manipulation policies. However, creating such datasets is challenging: collecting robot manipul
Externí odkaz:
http://arxiv.org/abs/2403.12945
Autor:
Collaboration, Open X-Embodiment, O'Neill, Abby, Rehman, Abdul, Gupta, Abhinav, Maddukuri, Abhiram, Gupta, Abhishek, Padalkar, Abhishek, Lee, Abraham, Pooley, Acorn, Gupta, Agrim, Mandlekar, Ajay, Jain, Ajinkya, Tung, Albert, Bewley, Alex, Herzog, Alex, Irpan, Alex, Khazatsky, Alexander, Rai, Anant, Gupta, Anchit, Wang, Andrew, Kolobov, Andrey, Singh, Anikait, Garg, Animesh, Kembhavi, Aniruddha, Xie, Annie, Brohan, Anthony, Raffin, Antonin, Sharma, Archit, Yavary, Arefeh, Jain, Arhan, Balakrishna, Ashwin, Wahid, Ayzaan, Burgess-Limerick, Ben, Kim, Beomjoon, Schölkopf, Bernhard, Wulfe, Blake, Ichter, Brian, Lu, Cewu, Xu, Charles, Le, Charlotte, Finn, Chelsea, Wang, Chen, Xu, Chenfeng, Chi, Cheng, Huang, Chenguang, Chan, Christine, Agia, Christopher, Pan, Chuer, Fu, Chuyuan, Devin, Coline, Xu, Danfei, Morton, Daniel, Driess, Danny, Chen, Daphne, Pathak, Deepak, Shah, Dhruv, Büchler, Dieter, Jayaraman, Dinesh, Kalashnikov, Dmitry, Sadigh, Dorsa, Johns, Edward, Foster, Ethan, Liu, Fangchen, Ceola, Federico, Xia, Fei, Zhao, Feiyu, Frujeri, Felipe Vieira, Stulp, Freek, Zhou, Gaoyue, Sukhatme, Gaurav S., Salhotra, Gautam, Yan, Ge, Feng, Gilbert, Schiavi, Giulio, Berseth, Glen, Kahn, Gregory, Yang, Guangwen, Wang, Guanzhi, Su, Hao, Fang, Hao-Shu, Shi, Haochen, Bao, Henghui, Amor, Heni Ben, Christensen, Henrik I, Furuta, Hiroki, Bharadhwaj, Homanga, Walke, Homer, Fang, Hongjie, Ha, Huy, Mordatch, Igor, Radosavovic, Ilija, Leal, Isabel, Liang, Jacky, Abou-Chakra, Jad, Kim, Jaehyung, Drake, Jaimyn, Peters, Jan, Schneider, Jan, Hsu, Jasmine, Vakil, Jay, Bohg, Jeannette, Bingham, Jeffrey, Wu, Jeffrey, Gao, Jensen, Hu, Jiaheng, Wu, Jiajun, Wu, Jialin, Sun, Jiankai, Luo, Jianlan, Gu, Jiayuan, Tan, Jie, Oh, Jihoon, Wu, Jimmy, Lu, Jingpei, Yang, Jingyun, Malik, Jitendra, Silvério, João, Hejna, Joey, Booher, Jonathan, Tompson, Jonathan, Yang, Jonathan, Salvador, Jordi, Lim, Joseph J., Han, Junhyek, Wang, Kaiyuan, Rao, Kanishka, Pertsch, Karl, Hausman, Karol, Go, Keegan, Gopalakrishnan, Keerthana, Goldberg, Ken, Byrne, Kendra, Oslund, Kenneth, Kawaharazuka, Kento, Black, Kevin, Lin, Kevin, Zhang, Kevin, Ehsani, Kiana, Lekkala, Kiran, Ellis, Kirsty, Rana, Krishan, Srinivasan, Krishnan, Fang, Kuan, Singh, Kunal Pratap, Zeng, Kuo-Hao, Hatch, Kyle, Hsu, Kyle, Itti, Laurent, Chen, Lawrence Yunliang, Pinto, Lerrel, Fei-Fei, Li, Tan, Liam, Fan, Linxi "Jim", Ott, Lionel, Lee, Lisa, Weihs, Luca, Chen, Magnum, Lepert, Marion, Memmel, Marius, Tomizuka, Masayoshi, Itkina, Masha, Castro, Mateo Guaman, Spero, Max, Du, Maximilian, Ahn, Michael, Yip, Michael C., Zhang, Mingtong, Ding, Mingyu, Heo, Minho, Srirama, Mohan Kumar, Sharma, Mohit, Kim, Moo Jin, Kanazawa, Naoaki, Hansen, Nicklas, Heess, Nicolas, Joshi, Nikhil J, Suenderhauf, Niko, Liu, Ning, Di Palo, Norman, Shafiullah, Nur Muhammad Mahi, Mees, Oier, Kroemer, Oliver, Bastani, Osbert, Sanketi, Pannag R, Miller, Patrick "Tree", Yin, Patrick, Wohlhart, Paul, Xu, Peng, Fagan, Peter David, Mitrano, Peter, Sermanet, Pierre, Abbeel, Pieter, Sundaresan, Priya, Chen, Qiuyu, Vuong, Quan, Rafailov, Rafael, Tian, Ran, Doshi, Ria, Mart'in-Mart'in, Roberto, Baijal, Rohan, Scalise, Rosario, Hendrix, Rose, Lin, Roy, Qian, Runjia, Zhang, Ruohan, Mendonca, Russell, Shah, Rutav, Hoque, Ryan, Julian, Ryan, Bustamante, Samuel, Kirmani, Sean, Levine, Sergey, Lin, Shan, Moore, Sherry, Bahl, Shikhar, Dass, Shivin, Sonawani, Shubham, Tulsiani, Shubham, Song, Shuran, Xu, Sichun, Haldar, Siddhant, Karamcheti, Siddharth, Adebola, Simeon, Guist, Simon, Nasiriany, Soroush, Schaal, Stefan, Welker, Stefan, Tian, Stephen, Ramamoorthy, Subramanian, Dasari, Sudeep, Belkhale, Suneel, Park, Sungjae, Nair, Suraj, Mirchandani, Suvir, Osa, Takayuki, Gupta, Tanmay, Harada, Tatsuya, Matsushima, Tatsuya, Xiao, Ted, Kollar, Thomas, Yu, Tianhe, Ding, Tianli, Davchev, Todor, Zhao, Tony Z., Armstrong, Travis, Darrell, Trevor, Chung, Trinity, Jain, Vidhi, Kumar, Vikash, Vanhoucke, Vincent, Zhan, Wei, Zhou, Wenxuan, Burgard, Wolfram, Chen, Xi, Chen, Xiangyu, Wang, Xiaolong, Zhu, Xinghao, Geng, Xinyang, Liu, Xiyuan, Liangwei, Xu, Li, Xuanlin, Pang, Yansong, Lu, Yao, Ma, Yecheng Jason, Kim, Yejin, Chebotar, Yevgen, Zhou, Yifan, Zhu, Yifeng, Wu, Yilin, Xu, Ying, Wang, Yixuan, Bisk, Yonatan, Dou, Yongqiang, Cho, Yoonyoung, Lee, Youngwoon, Cui, Yuchen, Cao, Yue, Wu, Yueh-Hua, Tang, Yujin, Zhu, Yuke, Zhang, Yunchu, Jiang, Yunfan, Li, Yunshuang, Li, Yunzhu, Iwasawa, Yusuke, Matsuo, Yutaka, Ma, Zehan, Xu, Zhuo, Cui, Zichen Jeff, Zhang, Zichen, Fu, Zipeng, Lin, Zipeng
Large, high-capacity models trained on diverse datasets have shown remarkable successes on efficiently tackling downstream applications. In domains from NLP to Computer Vision, this has led to a consolidation of pretrained models, with general pretra
Externí odkaz:
http://arxiv.org/abs/2310.08864
Processes of coalescence and fragmentation are used to understand the time-evolution of the mass distribution of various systems and may result in a steady state or in stable deterministic or stochastic cycles. Motivated by applications in insurgency
Externí odkaz:
http://arxiv.org/abs/2310.04226
Publikováno v:
BMC Public Health, Vol 24, Iss 1, Pp 1-9 (2024)
Abstract Objectives Maternal mortality in the U.S. continues to increase, and the State of Georgia has one of the highest maternal mortality rates among the 50 states at 33.9 deaths per 100,000 live births, disproportionately affecting Black and rura
Externí odkaz:
https://doaj.org/article/f7c7772c2c4b49bf92206029392fe900
Autor:
Richard J Fagan, Dane Eskildsen, Tara Catanzano, Rachel Stanietzky, Serageldin Kamel, Khaled M. Elsayes
Publikováno v:
Diagnostic and Interventional Radiology, Vol 30, Iss 5, Pp 313-317 (2024)
Burnout is a widespread issue among physicians, including radiologists and radiology trainees. Long hours, isolation, and substantial stress levels contribute to healthcare workers experiencing a substantially higher rate of burnout compared with oth
Externí odkaz:
https://doaj.org/article/7b2abce6b4c84cf99a665c8c7b567749