Zobrazeno 1 - 10
of 14 951
pro vyhledávání: '"P Christel"'
Autor:
Edda Mack
Publikováno v:
Gender, Vol 16, Iss 2-2024, Pp 159-161 (2024)
Externí odkaz:
https://doaj.org/article/2f0e8d456bea4f2f91a1444cbfc0f3a8
Autor:
Annamária – Izabella PAZSINT
Publikováno v:
Journal of Ancient History and Archaeology, Vol 10, Iss 3 (2023)
Thibaut Castelli, Christel Müller (eds.), De Mithridate VI à Arrien de Nicomédie : changements et continuités dans le bassin de la mer Noire entre le Ier s. a.C. et le Ier s. p. C., Actes du colloque de Paris Nanterre, 2 et 3 mars 2018, Bordeaux,
Externí odkaz:
https://doaj.org/article/ab0c22b7edf5475282c3670e4239e61c
Autor:
Christian De Moor
Publikováno v:
Communication, Vol 40, Iss 1 (2023)
Externí odkaz:
https://doaj.org/article/c5c39935752440ec8daf6866b94f74fa
Autor:
Ebertz, Michael N.
Publikováno v:
Soziologische Revue; Jul2022, Vol. 45 Issue 3, p389-394, 6p
The enormous growth of the complexity of modern computer systems leads to an increasing demand for techniques that support the comprehensibility of systems. This has motivated the very active research field of formal methods that enhance the understa
Externí odkaz:
http://arxiv.org/abs/2412.05162
Contrastive learning has significantly improved representation quality, enhancing knowledge transfer across tasks in continual learning (CL). However, catastrophic forgetting remains a key challenge, as contrastive based methods primarily focus on "s
Externí odkaz:
http://arxiv.org/abs/2412.02865
We present the architecture of a fully autonomous, bio-inspired cognitive agent built around a spiking neural network (SNN) implementing the agent's semantic memory. The agent explores its universe and learns concepts of objects/situations and of its
Externí odkaz:
http://arxiv.org/abs/2411.12308
Upholding data privacy especially in medical research has become tantamount to facing difficulties in accessing individual-level patient data. Estimating mixed effects binary logistic regression models involving data from multiple data providers like
Externí odkaz:
http://arxiv.org/abs/2411.04002
Autor:
Sirocchi, Christel, Suffian, Muhammad, Sabbatini, Federico, Bogliolo, Alessandro, Montagna, Sara
In clinical practice, decision-making relies heavily on established protocols, often formalised as rules. Concurrently, Machine Learning (ML) models, trained on clinical data, aspire to integrate into medical decision-making processes. However, despi
Externí odkaz:
http://arxiv.org/abs/2411.03105
Autor:
Ruparell, Karan, Marks, Robert J., Wood, Andy, Hunt, Kieran M. R., Cloke, Hannah L., Prudhomme, Christel, Pappenberger, Florian, Chantry, Matthew
Long Short Term Memory networks (LSTMs) are used to build single models that predict river discharge across many catchments. These models offer greater accuracy than models trained on each catchment independently if using the same data. However, the
Externí odkaz:
http://arxiv.org/abs/2410.16343