Zobrazeno 1 - 10
of 1 444
pro vyhledávání: '"P (X)-laplacian"'
Publikováno v:
Opuscula Mathematica, Vol 44, Iss 6, Pp 789-814 (2024)
The aim of this work is to present a result of multiplicity of solutions, in generalized Sobolev spaces, for a non-local elliptic problem with \(p(x)\)-Laplace operator containing \(k\) distinct critical Sobolev-Hardy exponents combined with singular
Externí odkaz:
https://doaj.org/article/49f82fd9cda94d06ba584199e89aa526
Autor:
Sun Bingzhi
Publikováno v:
Demonstratio Mathematica, Vol 57, Iss 1, Pp 121-140 (2024)
In this article, a functional boundary value problem involving mixed fractional derivatives with p(x)p\left(x)-Laplacian operator is investigated. Based on the fixed point theorems and Mawhin’s coincidence theory’s extension theory, some existenc
Externí odkaz:
https://doaj.org/article/a57ced6cf17f4b76a4e0a2c5b80c05b2
Autor:
Giovany Figueiredo, Abdolrahman Razani
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2024, Iss 33, Pp 1-17 (2024)
The problem deals with the anisotropic $p(x)$-Laplacian operator where $p_i$ are Lipschitz continuous functions $2\leq p_i(x)
Externí odkaz:
https://doaj.org/article/2f4d3439b0d641de827aeb89c0e7eb98
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-20 (2024)
Abstract In this paper, we analyze the existence of solutions to a double-phase fractional equation of the Kirchhoff type in Musielak-Orlicz Sobolev space with variable exponents. Our approach is mainly based on the sub-supersolution method and the m
Externí odkaz:
https://doaj.org/article/27e0f282b51f4a53ab6518d302572870
Autor:
Cheng Jiazhuo, Wang Qiru
Publikováno v:
Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 304-335 (2024)
This article is devoted to the study of the initial boundary value problem for a mixed pseudo-parabolic r(x)r\left(x)-Laplacian-type equation. First, by employing the imbedding theorems, the theory of potential wells, and the Galerkin method, we esta
Externí odkaz:
https://doaj.org/article/465c93a839204c0d9e7f92bb2e13e00f
Autor:
Bosheng Xiao, Qiongfen Zhang
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-23 (2024)
Abstract In this paper, we focus on the existence of ground state solutions for the p ( x ) $p(x)$ -Laplacian equation { − Δ p ( x ) u + λ | u | p ( x ) − 2 u = f ( x , u ) + h ( x ) in Ω , u = 0 , on ∂ Ω . $$ \textstyle\begin{cases} -\Delt
Externí odkaz:
https://doaj.org/article/7ceed99cb77243a8b5b5671b6acc95d1
Publikováno v:
Acta Universitatis Sapientiae: Mathematica, Vol 15, Iss 1, Pp 91-108 (2023)
In this paper we study a Neumann boundary value problem of a new p(x)-Kirchhoff type problems driven by p(x)-Laplacian-like operators. Using the theory of variable exponent Sobolev spaces and the method of the topological degree for a class of demico
Externí odkaz:
https://doaj.org/article/a17eb06ac76a4aa0a92dae8ea2e4f547
Publikováno v:
Opuscula Mathematica, Vol 44, Iss 1, Pp 105-134 (2023)
The paper deals with the existence of solutions for quasilinear elliptic systems involving singular and convection terms with variable exponents. The approach combines the sub-supersolutions method and Schauder's fixed point theorem.
Externí odkaz:
https://doaj.org/article/f878db15b58345ea8b03e9b06076789c
Publikováno v:
Mathematics, Vol 12, Iss 16, p 2441 (2024)
The existence of multiple pairs of smooth positive solutions for a Carrier problem, driven by a p(x)-Laplacian operator, is studied. The approach adopted combines sub-super solutions, truncation, and variational techniques. In particular, after an ex
Externí odkaz:
https://doaj.org/article/d7fee52e8dc34bd0baf2320470f63878
Publikováno v:
Moroccan Journal of Pure and Applied Analysis, Vol 9, Iss 3, Pp 311-330 (2023)
In this paper, we study the solvability to the left of the positive infimum of all eigenvalues for some non-resonant quasilinear elliptic problems involving variable exponents. We first prove the existence of at least a weak solution for some non-var
Externí odkaz:
https://doaj.org/article/8c2b2d6b945e40698cff411a979e4f41