Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Pérez, V. H. Jorge"'
Let $(R, \mathfrak{m})$ be a $d$-dimensional Noetherian local ring that is formally equidimensional, and let $M$ be an arbitrary $R$-submodule of the free module $F = R^p$ with an analytic spread $s:=s(M)$. In this work, inspired by Herzog-Puthenpura
Externí odkaz:
http://arxiv.org/abs/2307.06121
In this paper we explore consequences of the vanishing of ${\rm Ext}$ for finitely generated modules over a quasi-fiber product ring $R$; that is, $R$ is a local ring such that $R/(\underline x)$ is a non-trivial fiber product ring, for some regular
Externí odkaz:
http://arxiv.org/abs/2205.01031
Autor:
Freitas, T. H., Pérez, V. H. Jorge
Let $(R,\mathfrak{m})$ be a commutative Noetherian local ring, $M$ be a finitely generated $R$-module and $\mathfrak{a}$, $I$ and $J$ be ideals of $R$. We investigate the structure of formal local cohomology modules of $\mathfrak{F}^i_{\mathfrak{a},I
Externí odkaz:
http://arxiv.org/abs/1503.06784
Autor:
Perez, V. H. Jorge, Tognon, C. H.
We introduce a generalization of the notion of local homology module, which we call a local homology module with respect to a pair of ideals $\left(I,J\right)$, and study its various properties such as vanishing, co-support and co-associated. We also
Externí odkaz:
http://arxiv.org/abs/1503.05137
Autor:
Lima, P. H., Perez, V. H. Jorge
Let $(R,\mathfrak{m})$ be a quasi-unmixed local ring and $I$ an equimultiple ideal of $R$ of analytic spread $s$. In this paper, we introduce the equimultiple coefficient ideals. Fix $k\in \{1,...,s\}.$ The largest ideal $L$ containing $I$ such that
Externí odkaz:
http://arxiv.org/abs/1502.05231
Autor:
Lima, P. H., Perez, V. H. Jorge
In this paper, we prove some well-known results on local cohomology with respect to a pair of ideals in graded version, such as, Independence Theorem, Lichtenbaum-Harshorne Vanishing Theorem, Basic Finiteness and Vanishing Theorem, among others. Besi
Externí odkaz:
http://arxiv.org/abs/1501.06766
Autor:
Perez, V. H. Jorge, Freitas, T. H.
Let $(R,\mathfrak{m},k)$ denote a local ring. For $I$ and $J$ ideals of $R$, for all integer $i$, let $H^i_{I,J}(-)$ denote the $i$-th local cohomology functor with respect to $(I,J)$. Here we give a generalized version of Local Duality Theorem for l
Externí odkaz:
http://arxiv.org/abs/1501.04464
Autor:
Lima, P. H., Perez, V. H. Jorge
In this paper we show that there is a close relationship between the invariants characterizing the homogeneous vanishing of the local cohomology of the Rees algebra and the associated graded ring for the good filtrations case. We obtain relationships
Externí odkaz:
http://arxiv.org/abs/1205.3152
Autor:
Lima, P. H., Perez, V. H. Jorge
Let $(A, \mathfrak{m})$ be a Noetherian local ring and $\mathfrak{F}=(I_{n})_{n\geq 0}$ a filtration. In this paper, we study the Gorenstein properties of the fiber cone $F(\mathfrak{F})$, where $\mathfrak{F}$ is a Hilbert filtration. Suppose that $F
Externí odkaz:
http://arxiv.org/abs/1205.3148
Let $(R, \mathfrak m)$ be a Noetherian local ring. In this work we use the notion of (FC)-sequences, as defined in \cite{perez-bedregal1}, to present some results concerning reductions and the positivity of mixed multiplicities of a finite collection
Externí odkaz:
http://arxiv.org/abs/1109.5058