Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Pål Sundsøy"'
Autor:
Eaman Jahani, Pål Sundsøy, Johannes Bjelland, Linus Bengtsson, Alex ‘Sandy’ Pentland, Yves-Alexandre de Montjoye
Publikováno v:
EPJ Data Science, Vol 6, Iss 1, Pp 1-21 (2017)
Abstract Mobile phones are one of the fastest growing technologies in the developing world with global penetration rates reaching 90%. Mobile phone data, also called CDR, are generated everytime phones are used and recorded by carriers at scale. CDR
Externí odkaz:
https://doaj.org/article/771de70cf9e745c1905a7447fd062662
Autor:
Eaman Jahani, Pål Sundsøy, Johannes Bjelland, Linus Bengtsson, Alex ‘Sandy’ Pentland, Yves-Alexandre de Montjoye
Publikováno v:
EPJ Data Science, Vol 6, Iss 1, Pp 1-1 (2017)
Externí odkaz:
https://doaj.org/article/c800ae2630614ac0ad8ddfce949c0172
Publikováno v:
Journal of Investment Strategies.
Autor:
Christopher James Brooks, Kenth Engø-Monsen, Andrew J. Tatem, Pål Sundsøy, Kristine Nilsen, Rajesh Lal Nyachhyon, Siobhán B. O’Connor, Elisabeth zu Erbach-Schoenberg, Pradeep Silpakar, Carla Pezzulo, Jessica Steele, Bonita Graupe, Maximilian Albert
Publikováno v:
Humanities & Social Sciences Communications, Vol 8, Iss 1, Pp 1-12 (2021)
Call detail records (CDRs) from mobile phone metadata are a promising data source for mapping poverty indicators in low- and middle-income countries. These data provide information on social networks, call behavior, and mobility patterns in a populat
Autor:
Pål Sundsøy, Md. Nadiruzzaman, David Wrathall, Kenth Engø-Monsen, Taimur Qureshi, Andrew J. Tatem, Asif M. Iqbal, Geoffrey Canright, Erik Wetter, Linus Bengtsson, Xin Lu
Publikováno v:
Climatic Change
Large-scale data from digital infrastructure, like mobile phone networks, provides rich information on the behavior of millions of people in areas affected by climate stress. Using anonymized data on mobility and calling behavior from 5.1 million Gra
Autor:
Pål Sundsøy, Eaman Jahani, Johannes Bjelland, Linus Bengtsson, Yves-Alexandre de Montjoye, Alex Pentland
Publikováno v:
Springer Berlin Heidelberg
EPJ Data Science, Vol 6, Iss 1, Pp 1-1 (2017)
EPJ Data Science, Vol 6, Iss 1, Pp 1-1 (2017)
Erratum: Upon publication of the original article [1], it was noticed that in the Availability of data materials section, the link to the code ‘https://github.com/eamanj/demographics_prediction’ was incorrectly given as ‘https://github.edu/eama
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aadd7a8a66d1bf683ecf4505dd038fa9
https://orcid.org/0000-0002-8053-9983
https://orcid.org/0000-0002-8053-9983
Autor:
Pål Sundsøy
Publikováno v:
Social, Cultural, and Behavioral Modeling ISBN: 9783319602394
SBP-BRiMS
SBP-BRiMS
The present study provides the first evidence that illiteracy can be predicted from standard mobile phone logs. By deriving a broad set of novel mobile phone indicators reflecting users’ financial, social and mobility patterns this study addresses
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::45141c1b9e036b5059042b13eb384a8e
https://doi.org/10.1007/978-3-319-60240-0_37
https://doi.org/10.1007/978-3-319-60240-0_37
Autor:
Erik Wetter, Xin Lu, Linus Bengtsson, Pål Sundsøy, Andrew J. Tatem, Tomas J. Bird, Victor A. Alegana, Kenth Engø-Monsen, Yves-Alexandre de Montjoye, Asif M. Iqbal, Carla Pezzulo, Joshua E. Blumenstock, Khandakar N. Hadiuzzaman, Jessica Steele, Johannes Bjelland
Publikováno v:
Journal of the Royal Society Interface
Journal of the Royal Society, Interface, vol 14, iss 127
Journal of the Royal Society, Interface, vol 14, iss 127
Poverty is one of the most important determinants of adverse health outcomes globally, a major cause of societal instability and one of the largest causes of lost human potential. Traditional approaches to measuring and targeting poverty rely heavily
Publikováno v:
Machine Learning and Knowledge Discovery in Databases ISBN: 9783319712727
ECML/PKDD (3)
ECML/PKDD (3)
Mobile phone metadata is increasingly used for humanitarian purposes in developing countries as traditional data is scarce. Basic demographic information is however often absent from mobile phone datasets, limiting the operational impact of the datas
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cb16c40c0328f0ac1bb43d27b3ae892b
https://doi.org/10.1007/978-3-319-71273-4_12
https://doi.org/10.1007/978-3-319-71273-4_12
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783319672557
SocInfo (2)
SocInfo (2)
At a societal level unemployment is an important indicator of the performance of an economy and risks in financial markets. This study provides the first confirmation that individual employment status can be predicted from standard mobile phone netwo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3e9d660f7f396b3357830ac45d229385
https://doi.org/10.1007/978-3-319-67256-4_2
https://doi.org/10.1007/978-3-319-67256-4_2