Zobrazeno 1 - 10
of 1 248
pro vyhledávání: '"P, Van Antwerpen"'
Autor:
Arie van Steensel
Publikováno v:
Tijdschrift voor Sociale en Economische Geschiedenis, Vol 21, Iss 1 (2024)
Externí odkaz:
https://doaj.org/article/4c3bc1e5f4cf485f9c961c6b1fb5432d
Autor:
Colazzo, Ilaria, Van Antwerpen, Arne
In this paper, we propose an extension of the cabling methods to bijective non-degenerate solutions of the Yang--Baxter equation, with applications to indecomposable and simple solutions. We address two main challenges in extending this technique to
Externí odkaz:
http://arxiv.org/abs/2410.23821
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A complete classification of all finite bijective set-theoretic solutions $(S,s)$ to the Pentagon Equation is obtained. First, it is shown that every such a solution determines a semigroup structure on the set $S$ that is the direct product $E\times
Externí odkaz:
http://arxiv.org/abs/2405.20406
Autor:
van Parys, Joris
Publikováno v:
Brood & Rozen: Tijdschrift voor de Geschiedenis van Sociale Bewegingen; 2021, Issue 2, p46-60, 8p
Autor:
Peiren, Luc
Publikováno v:
Brood & Rozen: Tijdschrift voor de Geschiedenis van Sociale Bewegingen; 2020, Issue 1, p42-55, 14p
We present a characterization of simple finite non-degenerate bijective set-theoretic solutions of the Yang-Baxter equation in terms of the algebraic structure of the associated permutation skew left braces. In particular, we prove that they need to
Externí odkaz:
http://arxiv.org/abs/2312.09687
Autor:
Janna Everaert
Publikováno v:
BMGN: Low Countries Historical Review, Vol 133 (2018)
Externí odkaz:
https://doaj.org/article/6f4061e4867940e19660cc7aed179780
Autor:
Properzi, Silvia, Van Antwerpen, Arne
We introduce two common divisor graphs associated with a finite skew brace, based on its $\lambda$- and $\theta$-orbits. We prove that the number of connected components is at most two and the diameter of a connected component is at most four. Furthe
Externí odkaz:
http://arxiv.org/abs/2306.12415
Algebras related to finite bijective or idempotent left non-degenerate solutions $(X,r)$ of the Yang--Baxter equation have been intensively studied. These are the monoid algebras $K[M(X,r)]$ and $K[A(X,r)]$, over a field $K$, of its structure monoid
Externí odkaz:
http://arxiv.org/abs/2305.06023