Zobrazeno 1 - 10
of 20 209
pro vyhledávání: '"P, Vélez"'
Autor:
Abbasi, R., Ackermann, M., Adams, J., Agarwalla, S. K., Aguado, T., Aguilar, J. A., Ahlers, M., Alameddine, J. M., Amin, N. M., Andeen, K., Argüelles, C., Ashida, Y., Athanasiadou, S., Axani, S. N., Babu, R., Bai, X., V., A. Balagopal, Baricevic, M., Barwick, S. W., Bash, S., Basu, V., Bay, R., Beatty, J. J., Tjus, J. Becker, Beise, J., Bellenghi, C., BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Blaufuss, E., Bloom, L., Blot, S., Bontempo, F., Motzkin, J. Y. Book, Meneguolo, C. Boscolo, Böser, S., Botner, O., Böttcher, J., Braun, J., Brinson, B., Brisson-Tsavoussis, Z., Brostean-Kaiser, J., Brusa, L., Burley, R. T., Butterfield, D., Campana, M. A., Caracas, I., Carloni, K., Carpio, J., Chattopadhyay, S., Chau, N., Chen, Z., Chirkin, D., Choi, S., Clark, B. A., Cochling, C., Coleman, A., Coleman, P., Collin, G. H., Connolly, A., Conrad, J. M., Corley, R., Cowen, D. F., De Clercq, C., DeLaunay, J. J., Delgado, D., Deng, S., Desai, A., Desiati, P., de Vries, K. D., de Wasseige, G., DeYoung, T., Diaz, A., Díaz-Vélez, J. C., Dierichs, P., Dittmer, M., Domi, A., Draper, L., Dujmovic, H., Durnford, D., Dutta, K., DuVernois, M. A., Ehrhardt, T., Eidenschink, L., Eimer, A., Eller, P., Ellinger, E., Mentawi, S. El, Elsässer, D., Engel, R., Erpenbeck, H., Esmail, W., Evans, J., Evenson, P. A., Fan, K. L., Fang, K., Farrag, K., Fazely, A. R., Fedynitch, A., Feigl, N., Fiedlschuster, S., Finley, C., Fischer, L., Fox, D., Franckowiak, A., Fukami, S., Fürst, P., Gallagher, J., Ganster, E., Garcia, A., Garcia, M., Garg, G., Genton, E., Gerhardt, L., Ghadimi, A., Girard-Carillo, C., Glaser, C., Glüsenkamp, T., Gonzalez, J. G., Goswami, S., Granados, A., Grant, D., Gray, S. J., Griffin, S., Griswold, S., Groth, K. M., Guevel, D., Günther, C., Gutjahr, P., Gruchot, K., Ha, C., Haack, C., Hallgren, A., Halve, L., Halzen, F., Hamacher, L., Hamdaoui, H., Minh, M. Ha, Handt, M., Hanson, K., Hardin, J., Harnisch, A. A., Hatch, P., Haungs, A., Häußler, J., Hardy, A., Hayes, W., Helbing, K., Hellrung, J., Hermannsgabner, J., Heuermann, L., Heyer, N., Hickford, S., Hidvegi, A., Hill, C., Hill, G. C., Hmaid, R., Hoffman, K. D., Hori, S., Hoshina, K., Hostert, M., Hou, W., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., Hymon, K., Ishihara, A., Iwakiri, W., Jacquart, M., Jain, S., Janik, O., Jansson, M., Jeong, M., Jin, M., Jones, B. J. P., Kamp, N., Kang, D., Kang, W., Kang, X., Kappes, A., Kappesser, D., Kardum, L., Karg, T., Karl, M., Karle, A., Katil, A., Katz, U., Kauer, M., Kelley, J. L., Khanal, M., Zathul, A. Khatee, Kheirandish, A., Kiryluk, J., Klein, S. R., Kobayashi, Y., Kochocki, A., Koirala, R., Kolanoski, H., Kontrimas, T., Köpke, L., Kopper, C., Koskinen, D. J., Koundal, P., Kowalski, M., Kozynets, T., Krieger, N., Krishnamoorthi, J., Kruiswijk, K., Krupczak, E., Kumar, A., Kun, E., Kurahashi, N., Lad, N., Gualda, C. Lagunas, Lamoureux, M., Larson, M. J., Lauber, F., Lazar, J. P., Lee, J. W., DeHolton, K. Leonard, Leszczyńska, A., Liao, J., Lincetto, M., Liu, Y. T., Liubarska, M., Love, C., Lu, L., Lucarelli, F., Luszczak, W., Lyu, Y., Madsen, J., Magnus, E., Mahn, K. B. M., Makino, Y., Manao, E., Mancina, S., Mand, A., Sainte, W. Marie, Mariş, I. C., Marka, S., Marka, Z., Marsee, M., Martinez-Soler, I., Maruyama, R., Mayhew, F., McNally, F., Mead, J. V., Meagher, K., Mechbal, S., Medina, A., Meier, M., Merckx, Y., Merten, L., Mitchell, J., Montaruli, T., Moore, R. W., Morii, Y., Morse, R., Moulai, M., Moy, A., Mukherjee, T., Naab, R., Nakos, M., Naumann, U., Necker, J., Negi, A., Neste, L., Neumann, M., Niederhausen, H., Nisa, M. U., Noda, K., Noell, A., Novikov, A., Pollmann, A. Obertacke, O'Dell, V., Olivas, A., Orsoe, R., Osborn, J., O'Sullivan, E., Palusova, V., Pandya, H., Park, N., Parker, G. K., Parrish, V., Paudel, E. N., Paul, L., Heros, C. Pérez de los, Pernice, T., Peterson, J., Pizzuto, A., Plum, M., Pontén, A., Popovych, Y., Rodriguez, M. Prado, Pries, B., Procter-Murphy, R., Przybylski, G. T., Pyras, L., Raab, C., Rack-Helleis, J., Rad, N., Ravn, M., Rawlins, K., Rechav, Z., Rehman, A., Resconi, E., Reusch, S., Rhode, W., Riedel, B., Rifaie, A., Roberts, E. J., Robertson, S., Rodan, S., Roellinghoff, G., Rongen, M., Rosted, A., Rott, C., Ruhe, T., Ruohan, L., Ryckbosch, D., Safa, I., Saffer, J., Salazar-Gallegos, D., Sampathkumar, P., Sandrock, A., Santander, M., Sarkar, S., Savelberg, J., Savina, P., Schaile, P., Schaufel, M., Schieler, H., Schindler, S., Schlickmann, L., Schlüter, B., Schlüter, F., Schmeisser, N., Schmidt, E., Schmidt, T., Schneider, J., Schröder, F. G., Schumacher, L., Schwirn, S., Sclafani, S., Seckel, D., Seen, L., Seikh, M., Seo, M., Seunarine, S., Myhr, P. Sevle, Shah, R., Shefali, S., Shimizu, N., Silva, M., Simmons, A., Skrzypek, B., Smithers, B., Snihur, R., Soedingrekso, J., Søgaard, A., Soldin, D., Soldin, P., Sommani, G., Spannfellner, C., Spiczak, G. M., Spiering, C., Stachurska, J., Stamatikos, M., Stanev, T., Stezelberger, T., Stürwald, T., Stuttard, T., Sullivan, G. W., Taboada, I., Ter-Antonyan, S., Terliuk, A., Thiesmeyer, M., Thompson, W. G., Thorpe, A., Thwaites, J., Tilav, S., Tollefson, K., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Turcotte, R., Elorrieta, M. A. Unland, Upadhyay, A. K., Upshaw, K., Vaidyanathan, A., Valtonen-Mattila, N., Vandenbroucke, J., van Eijndhoven, N., Vannerom, D., van Santen, J., Vara, J., Varsi, F., Veitch-Michaelis, J., Venugopal, M., Vereecken, M., Carrasco, S. Vergara, Verpoest, S., Veske, D., Vijai, A., Walck, C., Wang, A., Weaver, C., Weigel, P., Weindl, A., Weldert, J., Wen, A. Y., Wendt, C., Werthebach, J., Weyrauch, M., Whitehorn, N., Wiebusch, C. H., Williams, D. R., Witthaus, L., Wolf, M., Woodward, H., Wrede, G., Xu, X. W., Yanez, J. P., Yildizci, E., Yoshida, S., Young, R., Yu, S., Yuan, T., Zegarelli, A., Zhang, S., Zhang, Z., Zhelnin, P., Zilberman, P., Zimmerman, M.
We analyzed the 7.92$\times 10^{11}$ cosmic-ray-induced muon events collected by the IceCube Neutrino Observatory from May 13, 2011, when the fully constructed experiment started to take data, to May 12, 2023. This dataset provides an up-to-date cosm
Externí odkaz:
http://arxiv.org/abs/2412.05046
Autor:
Cuéllar, Mariano-Florentino, Dean, Jeff, Doshi-Velez, Finale, Hennessy, John, Konwinski, Andy, Koyejo, Sanmi, Moiloa, Pelonomi, Pierson, Emma, Patterson, David
Artificial Intelligence (AI), like any transformative technology, has the potential to be a double-edged sword, leading either toward significant advancements or detrimental outcomes for society as a whole. As is often the case when it comes to widel
Externí odkaz:
http://arxiv.org/abs/2412.02730
Autor:
Gomez, Humberto, Jusinskas, Renann Lipinski, Lopez-Arcos, Cristhiam, Velez, Alexander Quintero
In this work we propose a simple algebraic recursion for the complete one-loop integrands of $N$-graviton correlators. This formula automatically yields the correct symmetry factors of individual diagrams, taking into account both the graviton and th
Externí odkaz:
http://arxiv.org/abs/2411.07939
Autor:
Bovenzi, Inko, Carmel, Adi, Hu, Michael, Hurwitz, Rebecca M., McBride, Fiona, Benac, Leo, Ayala, José Roberto Tello, Doshi-Velez, Finale
In aims to uncover insights into medical decision-making embedded within observational data from clinical settings, we present a novel application of Inverse Reinforcement Learning (IRL) that identifies suboptimal clinician actions based on the actio
Externí odkaz:
http://arxiv.org/abs/2411.05237
We consider the problem of estimating the transition dynamics $T^*$ from near-optimal expert trajectories in the context of offline model-based reinforcement learning. We develop a novel constraint-based method, Inverse Transition Learning, that trea
Externí odkaz:
http://arxiv.org/abs/2411.05174
Autor:
Velez, Amilcar
This paper studies the properties of debiased machine learning (DML) estimators under a novel asymptotic framework, offering insights for improving the performance of these estimators in applications. DML is an estimation method suited to economic mo
Externí odkaz:
http://arxiv.org/abs/2411.01864
When explaining black-box machine learning models, it's often important for explanations to have certain desirable properties. Most existing methods `encourage' desirable properties in their construction of explanations. In this work, we demonstrate
Externí odkaz:
http://arxiv.org/abs/2410.23880
Publikováno v:
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 1, pp. 190-199, Jan. 2022
A major challenges of deep learning (DL) is the necessity to collect huge amounts of training data. Often, the lack of a sufficiently large dataset discourages the use of DL in certain applications. Typically, acquiring the required amounts of data c
Externí odkaz:
http://arxiv.org/abs/2410.22748
Vehicles are sophisticated machines equipped with sensors that provide real-time data for onboard driving assistance systems. Due to the wide variety of traffic, road, and weather conditions, continuous system enhancements are essential. Connectivity
Externí odkaz:
http://arxiv.org/abs/2410.21934
In this work, we introduce a generalized framework for multiscale state-space modeling that incorporates nested nonlinear dynamics, with a specific focus on Bayesian learning under switching regimes. Our framework captures the complex interactions be
Externí odkaz:
http://arxiv.org/abs/2410.19074