Zobrazeno 1 - 10
of 5 556
pro vyhledávání: '"P, Reichardt"'
Autor:
Chichura, P. M., Rahlin, A., Anderson, A. J., Ansarinejad, B., Archipley, M., Balkenhol, L., Benabed, K., Bender, A. N., Benson, B. A., Bianchini, F., Bleem, L. E., Bouchet, F. R., Bryant, L., Camphuis, E., Carlstrom, J. E., Chang, C. L., Chaubal, P., Chokshi, A., Chou, T. -L., Coerver, A., Crawford, T. M., Daley, C., de Haan, T., Dibert, K. R., Dobbs, M. A., Doohan, M., Doussot, A., Dutcher, D., Everett, W., Feng, C., Ferguson, K. R., Fichman, K., Foster, A., Galli, S., Gambrel, A. E., Gardner, R. W., Ge, F., Goeckner-Wald, N., Gualtieri, R., Guidi, F., Guns, S., Halverson, N. W., Hivon, E., Holder, G. P., Holzapfel, W. L., Hood, J. C., Hryciuk, A., Huang, N., Kéruzoré, F., Khalife, A. R., Kim, J., Knox, L., Korman, M., Kornoelje, K., Kuo, C. -L., Levy, K., Lowitz, A. E., Lu, C., Maniyar, A., Marrone, D. P., Martsen, E. S., Menanteau, F., Millea, M., Montgomery, J., Nakato, Y., Natoli, T., Noble, G. I., Omori, Y., Padin, S., Pan, Z., Paschos, P., Phadke, K. A., Pollak, A. W., Prabhu, K., Quan, W., Rahimi, M., Reichardt, C. L., Rouble, M., Ruhl, J. E., Schiappucci, E., Sobrin, J. A., Stark, A. A., Stephen, J., Tandoi, C., Thorne, B., Trendafilova, C., Umilta, C., Veitch-Michaelis, J., Vieira, J. D., Vitrier, A., Wan, Y., Whitehorn, N., Wu, W. L. K., Young, M. R., Zagorski, K., Zebrowski, J. A.
We present improvements to the pointing accuracy of the South Pole Telescope (SPT) using machine learning. The ability of the SPT to point accurately at the sky is limited by its structural imperfections, which are impacted by the extreme weather at
Externí odkaz:
http://arxiv.org/abs/2412.15167
Autor:
Bocquet, S., Grandis, S., Krause, E., To, C., Bleem, L. E., Klein, M., Mohr, J. J., Schrabback, T., Alarcon, A., Alves, O., Amon, A., Andrade-Oliveira, F., Baxter, E. J., Bechtol, K., Becker, M. R., Bernstein, G. M., Blazek, J., Camacho, H., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Chang, C., Chen, R., Choi, A., Cordero, J., Crocce, M., Davis, C., DeRose, J., Diehl, H. T., Dodelson, S., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Fang, X., Ferté, A., Fosalba, P., Friedrich, O., Frieman, J., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Herner, K., Huang, H., Huff, E. M., Huterer, D., Jarvis, M., Kuropatkin, N., Leget, P. -F., Lemos, P., Liddle, A. R., MacCrann, N., McCullough, J., Muir, J., Myles, J., Navarro-Alsina, A., Pandey, S., Park, Y., Porredon, A., Prat, J., Raveri, M., Rollins, R. P., Roodman, A., Rosenfeld, R., Rykoff, E. S., Sánchez, C., Sanchez, J., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Varga, T. N., Weaverdyck, N., Wechsler, R. H., Wu, H. -Y., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Abbott, T. M. C., Ade, P. A. R., Aguena, M., Allam, S., Allen, S. W., Anderson, A. J., Ansarinejad, B., Austermann, J. E., Bayliss, M., Beall, J. A., Bender, A. N., Benson, B. A., Bianchini, F., Brodwin, M., Brooks, D., Bryant, L., Burke, D. L., Canning, R. E. A., Carlstrom, J. E., Carretero, J., Castander, F. J., Chang, C. L., Chaubal, P., Chiang, H. C., Chou, T-L., Citron, R., Moran, C. Corbett, Costanzi, M., Crawford, T. M., Crites, A. T., da Costa, L. N., Pereira, M. E. S., Davis, T. M., de Haan, T., Dobbs, M. A., Doel, P., Everett, W., Farahi, A., Flaugher, B., Flores, A. M., Floyd, B., Gallicchio, J., Gaztanaga, E., George, E. M., Gladders, M. D., Gupta, N., Gutierrez, G., Halverson, N. W., Hinton, S. R., Hlavacek-Larrondo, J., Holder, G. P., Hollowood, D. L., Holzapfel, W. L., Hrubes, J. D., Huang, N., Hubmayr, J., Irwin, K. D., James, D. J., Kéruzoré, F., Khullar, G., Kim, K., Knox, L., Kraft, R., Kuehn, K., Lahav, O., Lee, A. T., Lee, S., Li, D., Lidman, C., Lima, M., Lowitz, A., Mahler, G., Mantz, A., Marshall, J. L., McDonald, M., McMahon, J. J., Mena-Fernández, J., Meyer, S. S., Miquel, R., Montgomery, J., Natoli, T., Nibarger, J. P., Noble, G. I., Novosad, V., Ogando, R. L. C., Padin, S., Paschos, P., Patil, S., Malagón, A. A. Plazas, Pryke, C., Reichardt, C. L., Roberson, J., Romer, A. K., Romero, C., Ruhl, J. E., Saliwanchik, B. R., Salvati, L., Samuroff, S., Sanchez, E., Santiago, B., Sarkar, A., Saro, A., Schaffer, K. K., Sharon, K., Sievers, C., Smecher, G., Smith, M., Somboonpanyakul, T., Sommer, M., Stalder, B., Stark, A. A., Stephen, J., Strazzullo, V., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Tucker, C., Tucker, D. L., Veach, T., Vieira, J. D., von der Linden, A., Wang, G., Whitehorn, N., Wu, W. L. K., Yefremenko, V., Young, M., Zebrowski, J. A., Zohren, H., Collaboration, DES, Collaboration, SPT
Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest an
Externí odkaz:
http://arxiv.org/abs/2412.07765
Autor:
Romero, Charles, Gaspari, Massimo, Schellenberger, Gerrit, Benson, Bradford A., Bleem, Lindsey E., Bulbul, Esra, Forman, William, Kraft, Ralph, Nulsen, Paul, Reichardt, Christian L., Sarkar, Arnab, Somboonpanyakul, Taweewat, Su, Yuanyuan
The hot plasma in galaxy clusters, the intracluster medium (ICM), is expected to be shaped by subsonic turbulent motions, which are key for heating, cooling, and transport mechanisms. The turbulent motions contribute to the non-thermal pressure which
Externí odkaz:
http://arxiv.org/abs/2412.05478
Autor:
Rahimi, M., Reichardt, C. L.
Since the first detection by the DASI experiment in 2002, measurements of the polarization of the cosmic microwave background (CMB) have grown into an important role in testing our understanding of conditions in the early universe and cosmology. The
Externí odkaz:
http://arxiv.org/abs/2412.04099
Autor:
Reichardt, Ben W., Paetznick, Adam, Aasen, David, Basov, Ivan, Bello-Rivas, Juan M., Bonderson, Parsa, Chao, Rui, van Dam, Wim, Hastings, Matthew B., Paz, Andres, da Silva, Marcus P., Sundaram, Aarthi, Svore, Krysta M., Vaschillo, Alexander, Wang, Zhenghan, Zanner, Matt, Cairncross, William B., Chen, Cheng-An, Crow, Daniel, Kim, Hyosub, Kindem, Jonathan M., King, Jonathan, McDonald, Michael, Norcia, Matthew A., Ryou, Albert, Stone, Mark, Wadleigh, Laura, Barnes, Katrina, Battaglino, Peter, Bohdanowicz, Thomas C., Booth, Graham, Brown, Andrew, Brown, Mark O., Cassella, Kayleigh, Coxe, Robin, Epstein, Jeffrey M., Feldkamp, Max, Griger, Christopher, Halperin, Eli, Heinz, Andre, Hummel, Frederic, Jaffe, Matthew, Jones, Antonia M. W., Kapit, Eliot, Kotru, Krish, Lauigan, Joseph, Li, Ming, Marjanovic, Jan, Megidish, Eli, Meredith, Matthew, Morshead, Ryan, Muniz, Juan A., Narayanaswami, Sandeep, Nishiguchi, Ciro, Paule, Timothy, Pawlak, Kelly A., Pudenz, Kristen L., Pérez, David Rodríguez, Simon, Jon, Smull, Aaron, Stack, Daniel, Urbanek, Miroslav, van de Veerdonk, René J. M., Vendeiro, Zachary, Weverka, Robert T., Wilkason, Thomas, Wu, Tsung-Yao, Xie, Xin, Zalys-Geller, Evan, Zhang, Xiaogang, Bloom, Benjamin J.
Transitioning from quantum computation on physical qubits to quantum computation on encoded, logical qubits can improve the error rate of operations, and will be essential for realizing valuable quantum computational advantages. Using a neutral atom
Externí odkaz:
http://arxiv.org/abs/2411.11822
Autor:
Ge, F., Millea, M., Camphuis, E., Daley, C., Huang, N., Omori, Y., Quan, W., Anderes, E., Anderson, A. J., Ansarinejad, B., Archipley, M., Balkenhol, L., Benabed, K., Bender, A. N., Benson, B. A., Bianchini, F., Bleem, L. E., Bouchet, F. R., Bryant, L., Carlstrom, J. E., Chang, C. L., Chaubal, P., Chen, G., Chichura, P. M., Chokshi, A., Chou, T. -L., Coerver, A., Crawford, T. M., de Haan, T., Dibert, K. R., Dobbs, M. A., Doohan, M., Doussot, A., Dutcher, D., Everett, W., Feng, C., Ferguson, K. R., Fichman, K., Foster, A., Galli, S., Gambrel, A. E., Gardner, R. W., Goeckner-Wald, N., Gualtieri, R., Guidi, F., Guns, S., Halverson, N. W., Hivon, E., Holder, G. P., Holzapfel, W. L., Hood, J. C., Howe, D., Hryciuk, A., Kéruzoré, F., Khalife, A. R., Knox, L., Korman, M., Kornoelje, K., Kuo, C. -L., Lee, A. T., Levy, K., Lowitz, A. E., Lu, C., Maniyar, A., Martsen, E. S., Menanteau, F., Montgomery, J., Nakato, Y., Natoli, T., Noble, G. I., Pan, Z., Paschos, P., Phadke, K. A., Pollak, A. W., Prabhu, K., Rahimi, M., Rahlin, A., Reichardt, C. L., Riebel, D., Rouble, M., Ruhl, J. E., Schiappucci, E., Sobrin, J. A., Stark, A. A., Stephen, J., Tandoi, C., Thorne, B., Trendafilova, C., Umilta, C., Vieira, J. D., Vitrier, A., Wan, Y., Whitehorn, N., Wu, W. L. K., Young, M. R., Zebrowski, J. A.
From CMB polarization data alone we reconstruct the CMB lensing power spectrum, comparable in overall constraining power to previous temperature-based reconstructions, and an unlensed E-mode power spectrum. The observations, taken in 2019 and 2020 wi
Externí odkaz:
http://arxiv.org/abs/2411.06000
Autor:
Migkas, K., Sommer, M. W., Schrabback, T., Carrasco, E. R., Zenteno, A., Zohren, H., Bleem, L. E., Nazaretyan, V., Bayliss, M., Bulbul, E., Floyd, B., Gassis, R., McDonald, M., Grandis, S., Reichardt, C., Sarkar, A., Sharon, K., Somboonpanyakul, T.
Galaxy cluster mergers are excellent laboratories for studying a wide variety of different physical phenomena. Such a unique system is the distant SPT-CLJ2228-5828 cluster merger located at $z\approx 0.77$. Previous analyses via Sunyaev-Zeldovich and
Externí odkaz:
http://arxiv.org/abs/2411.03833
Autor:
Foster, A., Chokshi, A., Anderson, A. J., Ansarinejad, B., Archipley, M., Balkenhol, L., Benabed, K., Bender, A. N., Barron, D. R., Benson, B. A., Bianchini, F., Bleem, L. E., Bouchet, F. R., Bryant, L., Camphuis, E., Carlstrom, J. E., Chang, C. L., Chaubal, P., Chichura, P. M., Chou, T. -L., Coerver, A., Crawford, T. M., Daley, C., de Haan, T., Dibert, K. R., Dobbs, M. A., Doussot, A., Dutcher, D., Everett, W., Feng, C., Ferguson, K. R., Fichman, K., Galli, S., Gambrel, A. E., Gardner, R. W., Ge, F., Goeckner-Wald, N., Gualtieri, R., Guidi, F., Guns, S., Halverson, N. W., Hivon, E., Holder, G. P., Holzapfel, W. L., Hood, J. C., Hryciuk, A., Huang, N., Kéruzoré, F., Khalife, A. R., Knox, L., Korman, M., Kornoelje, K., Kuo, C. -L., Levy, K., Lowitz, A. E., Lu, C., Maniyar, A., Martsen, E. S., Menanteau, F., Millea, M., Montgomery, J., Nakato, Y., Natoli, T., Noble, G. I., Omori, Y., Pan, Z., Paschos, P., Phadke, K. A., Pollak, A. W., Prabhu, K., Quan, W., Raghunathan, S., Rahimi, M., Rahlin, A., Reichardt, C. L., Rouble, M., Ruhl, J. E., Schiappucci, E., Sobrin, J. A., Stark, A. A., Stephen, J., Tandoi, C., Thorne, B., Trendafilova, C., Umilta, C., Vieira, J. D., Vitrier, A., Wan, Y., Whitehorn, N., Wu, W. L. K., Young, M. R., Zebrowski, J. A.
The detection of satellite thermal emission at millimeter wavelengths is presented using data from the 3rd-Generation receiver on the South Pole Telescope (SPT-3G). This represents the first reported detection of thermal emission from artificial sate
Externí odkaz:
http://arxiv.org/abs/2411.03374
Autor:
Fujino, Takuro, Takakura, Satoru, Arani, Shahed Shayan, Barron, Darcy, Baccigalupi, Carlo, Chinone, Yuji, Errard, Josquin, Fabbian, Giulio, Feng, Chang, Halverson, Nils W., Hasegawa, Masaya, Hazumi, Masashi, Jeong, Oliver, Kaneko, Daisuke, Keating, Brian, Kusaka, Akito, Lee, Adrian, Matsumura, Tomotake, Piccirillo, Lucio, Reichardt, Christian L., Sakaguri, Kana, Siritanasak, Praween, Yamada, Kyohei
At millimeter wavelengths, the atmospheric emission is circularly polarized owing to the Zeeman splitting of molecular oxygen by the Earth's magnetic field. We report a measurement of the signal in the 150 GHz band using 3 years of observations of th
Externí odkaz:
http://arxiv.org/abs/2410.18154
The Milky Way Radial Metallicity Gradient as an Equilibrium Phenomenon: Why Old Stars are Metal-Rich
Autor:
Johnson, James W., Weinberg, David H., Blanc, Guillermo A., Bonaca, Ana, Rudie, Gwen C., Yuxi, Lu, Chu, Bronwyn Reichardt, Griffith, Emily J., Sit, Tawny, Johnson, Jennifer A., Dubay, Liam O., Weller, Miqaela K., Boyea, Daniel A., Bird, Jonathan C.
Metallicities of both gas and stars decline toward large radii in spiral galaxies, a trend known as the radial metallicity gradient. We quantify the evolution of the metallicity gradient in the Milky Way as traced by APOGEE red giants with age estima
Externí odkaz:
http://arxiv.org/abs/2410.13256