Zobrazeno 1 - 10
of 46 074
pro vyhledávání: '"P, Rankin"'
Autor:
Ghosh, Aritra
Let $f$ be a $p$-primitive cusp form of level $p^{4r}$, where local representation of $f$ be supercuspidal at $p$, $p$ being an odd prime, $r\geq 1$ and $g$ be a Hecke-Maass or holomorphic primitive cusp form for $\mathrm{SL}(2,\mathbb{Z})$. A subcon
Externí odkaz:
http://arxiv.org/abs/2412.01739
Autor:
Barron, Philip, Xin, Yu
Let $\pi$ be a simple supercuspidal representation of the quasi-split unramified even unitary group with respect to an unramified quadratic extension $E/F$ of $p$-adic fields. We compute the Rankin-Selberg gamma factor for rank-$1$ twists of $\pi$ by
Externí odkaz:
http://arxiv.org/abs/2410.11995
Autor:
Groutides, Alexandros
We study how Rankin-Selberg periods interact with integral structures in spherical Whittaker type representations. Using this representation-theoretic framework, we show that the local Euler factors appearing in the construction of the motivic Rankin
Externí odkaz:
http://arxiv.org/abs/2407.01377
We construct an integral representation for the global Rankin-Selberg (partial) $L$-function $L(s, \pi \times \tau)$ where $\pi$ is an irreducible globally generic cuspidal automorphic representation of a general spin group (over an arbitrary number
Externí odkaz:
http://arxiv.org/abs/2409.17323
Let $f$ be a newform of weight $2k$ and let $\chi$ be an unramified imaginary quadratic Hecke character of infinity type $(2t, 0)$, for some integer $0 < t \leq k-1$. We show that the central derivative of the Rankin-Selberg $L$-function $L(f,\chi,s)
Externí odkaz:
http://arxiv.org/abs/2408.04375
Autor:
Castella, Francesc
Let $E/F$ be an elliptic curve defined over a number field $F$ with complex multiplication by the ring of integers of an imaginary quadratic field $K$ such that the torsion points of $E$ generate over $F$ an abelian extension of $K$. In this paper we
Externí odkaz:
http://arxiv.org/abs/2407.11891
We obtain density theorems for cuspidal automorphic representations of $\text{GL}_n$ over $\mathbb{Q}$ which fail the generalized Ramanujan conjecture at some place. We depart from previous approaches based on Kuznetsov-type trace formulae, and inste
Externí odkaz:
http://arxiv.org/abs/2408.13682
Autor:
Wang, Wei
The Shimura lift of a Hekce eigenform multiplied by a theta series is the square of the form. We extend this result by generalizing the product to the Rankin-Cohen brackets. We prove that the Shimura lift of the Rankin-Cohen bracket of an eigenform a
Externí odkaz:
http://arxiv.org/abs/2406.14254
Autor:
Zhang, Yichao, Zhou, Yang
Over any fixed totally real number field with narrow class number one, we prove that the Rankin-Cohen bracket of two Hecke eigenforms for the Hilbert modular group can only be a Hecke eigenform for dimension reasons, except for a couple of cases wher
Externí odkaz:
http://arxiv.org/abs/2405.17887
We generalize the linear relation formula between the square of normalized Hecke eigenforms of weight $k$ and normalized Hecke eigenforms of weight $2k$, to Rankin-Cohen brackets of general degree. As an ingredient of the proof, we also generalize a
Externí odkaz:
http://arxiv.org/abs/2405.16745