Zobrazeno 1 - 10
of 13 941
pro vyhledávání: '"P, Pieri"'
Autor:
Khanna, Aditya, Loehr, Nicholas A.
Asvin G and Andrew O'Desky recently introduced the graded algebra P$\Lambda$ of polysymmetric functions as a generalization of the algebra $\Lambda$ of symmetric functions. This article develops combinatorial formulas for some multiplication rules an
Externí odkaz:
http://arxiv.org/abs/2408.13404
A $k$-ribbon tiling is a decomposition of a connected skew diagram into disjoint ribbons of size $k$. In this paper, we establish a connection between a subset of $k$-ribbon tilings and Petrie symmetric functions, thus providing a combinatorial inter
Externí odkaz:
http://arxiv.org/abs/2406.00581
We prove a Pieri formula for motivic Chern classes of Schubert cells in the equivariant K-theory of Grassmannians, which is described in terms of ribbon operators on partitions. Our approach is to transform the Schubert calculus over Grassmannians to
Externí odkaz:
http://arxiv.org/abs/2402.04500
Autor:
Wen, Joshua Jeishing
We describe a way to study and compute Pieri rules for wreath Macdonald polynomials using the quantum toroidal algebra. The Macdonald pairing can be naturally generalized to the wreath setting, but the wreath Macdonald polynomials are no longer colli
Externí odkaz:
http://arxiv.org/abs/2402.06007
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We prove a collection of formulas for products of Schubert classes in the quantum $K$-theory ring $QK(X)$ of a cominuscule flag variety $X$. This includes a $K$-theory version of the Seidel representation, stating that the quantum product of a Seidel
Externí odkaz:
http://arxiv.org/abs/2308.05307
Autor:
Rajan, C. S., Shrivastava, Sagar
We give alternate proofs of the classical branching rules for highest weight representations of a complex reductive group $G$ restricted to a closed regular reductive subgroup $H$, where $(G,H)$ consist of the pairs $(GL(n+1),GL(n))$, $ (Spin(2n+1),
Externí odkaz:
http://arxiv.org/abs/2310.00323
Autor:
Concha, Manuel, Lapointe, Luc
Bisymmetric Macdonald polynomials can be obtained through a process of antisymmetrization and $t$-symmetrization of non-symmetric Macdonald polynomials. Using the double affine Hecke algebra, we show that the evaluation of the bisymmetric Macdonald p
Externí odkaz:
http://arxiv.org/abs/2307.02385
Autor:
Nakaoka, Shutaro
We prove the Pieri formulas for Schur multiple zeta functions, which are generalizations of the Pieri formulas proved by Nakasuji and Takeda for hook type Schur multiple zeta functions. Moreover, we also prove the Littlewood-Richardson rule for Schur
Externí odkaz:
http://arxiv.org/abs/2305.19975
Publikováno v:
Adv. Math. 392 (2022), 108027
Let $\hat{\mathfrak{g}}$ be an untwisted affine Lie algebra or the twisted counterpart thereof (which excludes the affine Lie algebras of type $\widehat{BC}_n=A^{(2)}_{2n}$). We present an affine Pieri rule for a basis of periodic Macdonald spherical
Externí odkaz:
http://arxiv.org/abs/2305.01931