Zobrazeno 1 - 10
of 277
pro vyhledávání: '"P, Massarenti"'
Autor:
Massarenti, Alex, Zucconi, Francesco
Let $\mathcal{F}_{8,2\times \frac{1}{2}(1,1,1)}$ be the moduli space of genus $8$ Fano $3$-folds with two singular points of type $\frac{1}{2}(1,1,1)$. We show that $\mathcal{F}_{8,2\times \frac{1}{2}(1,1,1)}$ is a rational variety.
Comment: 11
Comment: 11
Externí odkaz:
http://arxiv.org/abs/2408.13080
Autor:
Massarenti, Alex
We show that even dimensional Fermat cubic hypersurfaces are rational over any field of characteristic different from three by producing explicit rational parametrizations given by polynomials of low degree. As a byproduct of our rationality construc
Externí odkaz:
http://arxiv.org/abs/2406.07223
Let $X^{1,n}_r$ be the blow-up of $\mathbb{P}^1\times\mathbb{P}^n$ in $r$ general points. We describe the Mori cone of $X^{1,n}_r$ for $r\leq n+2$ and for $r = n+3$ when $n\leq 4$. Furthermore, we prove that $X^{1,n}_{n+1}$ is log Fano and give an ex
Externí odkaz:
http://arxiv.org/abs/2308.11283
We develop a framework that allows one to describe the birational geometry of Calabi-Yau pairs $(X,D)$. After establishing some general results for Calabi-Yau pairs $(X,D)$ with mild singularities, we focus on the special case when $X=\mathbb{P}^3$ a
Externí odkaz:
http://arxiv.org/abs/2306.00207
Autor:
Laface, Antonio, Massarenti, Alex
We introduce the notion of ample body of a projective variety and use it to prove emptiness results for Terracini loci and specific identifiability results for toric and homogeneous varieties.
Comment: 11 pages
Comment: 11 pages
Externí odkaz:
http://arxiv.org/abs/2304.07276
Autor:
Christine Lundtorp-Olsen, Nikoline Nygaard, Laura Massarenti, Florentin Constancias, Christian Damgaard, Ulvi Kahraman Gursoy, Annina van Splunter, Floris J. Bikker, Mervi Gursoy, Merete Markvart, Daniel Belstrøm
Publikováno v:
Journal of Oral Microbiology, Vol 16, Iss 1 (2024)
Background Gingivitis in response to biofilm formation may exhibit different trajectories. The purposes of the present study were to characterize the composition of the supragingival microbiota and salivary cytokine and protein levels in healthy indi
Externí odkaz:
https://doaj.org/article/c82f8f792a6243b3a766f5297a7167e1
Autor:
Massarenti, Alex
Let $X_4\subset\mathbb{P}^{n+1}$ be a quartic hypersurface of dimension $n\geq 4$ over an infinite field $k$. We show that if either $X_4$ contains a linear subspace $\Lambda$ of dimension $h\geq \max\{2,\dim(\Lambda\cap \text{Sing}(X_4))-2\}$ or has
Externí odkaz:
http://arxiv.org/abs/2212.14626
Autor:
Massarenti, Alex, Mella, Massimiliano
Let $X\subset\mathbb{P}^{hn+h-1}$ be an irreducible and non-degenerate variety of dimension $n$. The Bronowski's conjecture predicts that $X$ is $h$-identifiable if and only if the general $(h-1)$-tangential projection $\tau_{h-1}^X:X\dashrightarrow\
Externí odkaz:
http://arxiv.org/abs/2210.13524
Autor:
Massarenti, Alex
We prove that a general $n$-fold quadric bundle $\mathcal{Q}^{n-1}\rightarrow\mathbb{P}^{1}$, over a number field, with $(-K_{\mathcal{Q}^{n-1}})^n > 0$ and discriminant of odd degree $\delta_{\mathcal{Q}^{n-1}}$ is unirational, and that the same hol
Externí odkaz:
http://arxiv.org/abs/2204.08793
We construct wonderful compactifications of the spaces of linear maps, and symmetric linear maps of a given rank as blow-ups of secant varieties of Segre and Veronese varieties. Furthermore, we investigate their birational geometry and their relation
Externí odkaz:
http://arxiv.org/abs/2111.02940