Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Ozeki, Yoshiyasu"'
Autor:
Ozeki, Yoshiyasu
Publikováno v:
Pacific J. Math. 330 (2024) 171-197
Let $K$ and $k$ be $p$-adic fields. Let $L$ be the composite field of $K$ and a certain Lubin-Tate extension over $k$ (including the case where $L=K(\mu_{p^{\infty}})$). In this paper, we show that there exists an explicitly described constant $C$, d
Externí odkaz:
http://arxiv.org/abs/2303.13725
Autor:
Ozeki, Yoshiyasu
Let $p$ be a prime number and $M$ the extension field of a $p$-adic field $K$ obtained by adjoining all $p$-power roots of all elements of $K$. In this paper, we show that there exists a constant $C$, depending only on $K$ and an integer $g>0$, which
Externí odkaz:
http://arxiv.org/abs/2209.01811
Autor:
Ozeki, Yoshiyasu
We show finiteness results on torsion points of commutative algebraic groups over a $p$-adic field $K$ with values in various algebraic extensions $L/K$ of infinite degree. We mainly study the following cases: (1) $L$ is an abelian extension which is
Externí odkaz:
http://arxiv.org/abs/2105.11049
Autor:
Ozeki, Yoshiyasu, Taguchi, Yuichiro
We introduce a notion of highly Kummer-faithful fields and study its relationship with the notion of Kummer-faithful fields. We also give some examples of highly Kummer-faithful fields. For example, if $k$ is a number field of finite degree over $\ma
Externí odkaz:
http://arxiv.org/abs/2005.13721
Autor:
Ozeki, Yoshiyasu
We show that, for an abelian variety defined over a $p$-adic field $K$ which has potential good reduction, its torsion subgroup with values in the composite field of $K$ and a certain Lubin-Tate extension over a $p$-adic field is finite.
Externí odkaz:
http://arxiv.org/abs/1806.07515
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ozeki, Yoshiyasu
Cais and Liu extended the theory of Kisin modules and crystalline representations to allow more general coefficient fields and lifts of Frobenius. Based on their theory, we classify lattices in crystalline representations by Kisin modules with additi
Externí odkaz:
http://arxiv.org/abs/1609.04490
Autor:
Ozeki, Yoshiyasu
Let $p$ be a prime number and $r$ a non-negative integer. In this paper, we prove that there exists an anti-equivalence between the category of weak $(\varphi,\hat{G})$-modules of height $r$ and a certain subcategory of the category of Galois stable
Externí odkaz:
http://arxiv.org/abs/1502.00340
Autor:
Ozeki, Yoshiyasu
Publikováno v:
In Journal of Number Theory February 2020 207:282-293
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.