Zobrazeno 1 - 10
of 107
pro vyhledávání: '"Ozdemir, Onur"'
We introduce a new computer aided detection and diagnosis system for lung cancer screening with low-dose CT scans that produces meaningful probability assessments. Our system is based entirely on 3D convolutional neural networks and achieves state-of
Externí odkaz:
http://arxiv.org/abs/1902.03233
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Russell, Rebecca L., Kim, Louis, Hamilton, Lei H., Lazovich, Tomo, Harer, Jacob A., Ozdemir, Onur, Ellingwood, Paul M., McConley, Marc W.
Increasing numbers of software vulnerabilities are discovered every year whether they are reported publicly or discovered internally in proprietary code. These vulnerabilities can pose serious risk of exploit and result in system compromise, informat
Externí odkaz:
http://arxiv.org/abs/1807.04320
Autor:
Harer, Jacob, Ozdemir, Onur, Lazovich, Tomo, Reale, Christopher P., Russell, Rebecca L., Kim, Louis Y., Chin, Peter
Motivated by the problem of automated repair of software vulnerabilities, we propose an adversarial learning approach that maps from one discrete source domain to another target domain without requiring paired labeled examples or source and target do
Externí odkaz:
http://arxiv.org/abs/1805.07475
Personalized search provides a potentially powerful tool, however, it is limited due to the large number of roles that a person has: parent, employee, consumer, etc. We present the role-relevance algorithm: a search technique that favors search resul
Externí odkaz:
http://arxiv.org/abs/1804.07447
Autor:
Harer, Jacob A., Kim, Louis Y., Russell, Rebecca L., Ozdemir, Onur, Kosta, Leonard R., Rangamani, Akshay, Hamilton, Lei H., Centeno, Gabriel I., Key, Jonathan R., Ellingwood, Paul M., Antelman, Erik, Mackay, Alan, McConley, Marc W., Opper, Jeffrey M., Chin, Peter, Lazovich, Tomo
Thousands of security vulnerabilities are discovered in production software each year, either reported publicly to the Common Vulnerabilities and Exposures database or discovered internally in proprietary code. Vulnerabilities often manifest themselv
Externí odkaz:
http://arxiv.org/abs/1803.04497
Motivated by the problem of computer-aided detection (CAD) of pulmonary nodules, we introduce methods to propagate and fuse uncertainty information in a multi-stage Bayesian convolutional neural network (CNN) architecture. The question we seek to ans
Externí odkaz:
http://arxiv.org/abs/1712.00497
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ozdemir, Onur
Publikováno v:
Hitit Sosyal Bilimler Dergisi / Hitit Journal of Social Sciences. 14(1):110-123
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=963376
Autor:
Ozdemir, Onur, Dogan, Emrah
Publikováno v:
Business and Economics Research Journal. 12(2):245-268
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=947505