Zobrazeno 1 - 10
of 93
pro vyhledávání: '"Oyonarte, Luis"'
In this paper we introduce and study the weak Gorenstein global dimension of a ring $R$ with respect to a left $R$-module $C$. We provide several characterizations of when this homological invariant is bounded. Two main applications are given: first,
Externí odkaz:
http://arxiv.org/abs/2304.05228
A model structure on a category is a formal way of introducing a homotopy theory on that category, and if the model structure is abelian and hereditary, its homotopy category is known to be triangulated. So a good way to both build and model a triang
Externí odkaz:
http://arxiv.org/abs/2205.02032
It is now very known how the subprojectivity of modules provides a fruitful new unified framework of the classical projectivity and flatness. In this paper, we extend this fact to the category of complexes by generalizing and unifying several known c
Externí odkaz:
http://arxiv.org/abs/2203.01067
Recently, many authors have embraced the study of certain properties of modules such as projectivity, injectivity and flatness from an alternative point of view. Rather than saying a module has a certain property or not, each module is assigned a rel
Externí odkaz:
http://arxiv.org/abs/2106.15592
Let $A$ and $B$ be rings, $U$ a $(B,A)$-bimodule and $T=\begin{pmatrix} A&0\\U&B \end{pmatrix}$ the triangular matrix ring. In this paper, several notions in relative Gorenstein algebra over a triangular matrix ring are investigated. We first study h
Externí odkaz:
http://arxiv.org/abs/2106.10780
Recently, several authors have adopted new alternative approaches in the study of some classical notions of modules. Among them, we find the notion of subprojectivity which was introduced to measure in a way the degree of projectivity of modules. The
Externí odkaz:
http://arxiv.org/abs/2106.10742
In the last few years, Lopez-Permouth and several collaborators have introduced a new approach in the study of the classical projectivity, injectivity and flatness of modules. This way, they introduced subprojectivity domains of modules as a tool to
Externí odkaz:
http://arxiv.org/abs/2103.01364
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In Enochs' relative homological dimension theory occur the so called (co)resolvent and (co)proper dimensions which are defined using proper and coproper resolutions constructed by precovers and preenvelopes, respectively. Recently, some authors have
Externí odkaz:
http://arxiv.org/abs/1911.09346
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.