Zobrazeno 1 - 10
of 75
pro vyhledávání: '"Ovidiu Savin"'
Autor:
Daniela De Silva, Ovidiu Savin
Publikováno v:
Mathematics in Engineering, Vol 5, Iss 5, Pp 1-27 (2023)
We obtain density estimates for the free boundaries of minimizers $ u \ge 0 $ of the Alt-Phillips functional involving negative power potentials $ \int_\Omega \left(|\nabla u|^2 + u^{-\gamma} \chi_{\{u>0\}}\right) \, dx, \quad \quad \gamma \in (0
Externí odkaz:
https://doaj.org/article/b46e03dbb6164011892372e6262361ab
Autor:
Daniela De Silva, Ovidiu Savin
Publikováno v:
Mathematics in Engineering, Vol 4, Iss 1, Pp 1-12 (2022)
We investigate the boundary Harnack principle for uniformly elliptic operators in divergence form in Hölder domains of exponent α>0. We also deal with operators in nondivergence form with coefficient that remain constant in the graph direction.
Externí odkaz:
https://doaj.org/article/7ad18aa786124d02825c7f6f3bb95d43
Autor:
Nam Q. Le, Ovidiu Savin
Publikováno v:
American Journal of Mathematics. 145:221-249
Autor:
Daniela De Silva, Ovidiu Savin
Publikováno v:
Mathematics in Engineering. 5:1-27
We obtain density estimates for the free boundaries of minimizers $ u \ge 0 $ of the Alt-Phillips functional involving negative power potentials \begin{document}$ \int_\Omega \left(|\nabla u|^2 + u^{-\gamma} \chi_{\{u>0\}}\right) \, dx, \quad \quad \
Autor:
Ovidiu Savin, Hui Yu
Publikováno v:
Archive for Rational Mechanics and Analysis. 246:397-474
For the thin obstacle problem in 3d, we show that half-space solutions form an isolated family in the space of $7/2$-homogeneous solutions. For a general solution with one blow-up profile in this family, we establish the rate of convergence to this p
Autor:
Ovidiu Savin, Daniela De Silva
Publikováno v:
Mathematics in Engineering, Vol 4, Iss 1, Pp 1-12 (2022)
We investigate the boundary Harnack principle for uniformly elliptic operators in divergence form in Holder domains of exponent $ \alpha > 0 $. We also deal with operators in nondivergence form with coefficient that remain constant in the graph direc
Autor:
Daniela De Silva, Ovidiu Savin
We investigate the rigidity of global minimizersu≥0u\ge 0of the Alt-Phillips functional involving negative power potentials∫Ω(∣∇u∣2+u−γχ{u>0})dx,γ∈(0,2),\mathop{\int }\limits_{\Omega }(| \nabla u{| }^{2}+{u}^{-\gamma }{\chi }_{\left
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::96889070d374996545f102e86559465d
http://arxiv.org/abs/2211.00553
http://arxiv.org/abs/2211.00553
Autor:
Ovidiu Savin, Daniela De Silva
Publikováno v:
American Journal of Mathematics. 143:307-331
In this paper we obtain some extensions of the classical Krylov-Safonov Harnack inequality. The novelty is that we consider functions that do not necessarily satisfy an infinitesimal equation but rather exhibit a two-scale behavior. We require that a
Autor:
Ovidiu Savin, Qian Zhang
Publikováno v:
ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE. :1581-1619
Autor:
Daniela De Silva, Ovidiu Savin
Publikováno v:
Journal of Differential Equations. 269:2419-2429
We give a direct analytic proof of the classical Boundary Harnack Principle for solutions to linear uniformly elliptic equations in either divergence or non-divergence form.