Zobrazeno 1 - 10
of 135
pro vyhledávání: '"Oussama Hijazi"'
Autor:
Thomas Friedrich
Publikováno v:
Jahresbericht der Deutschen Mathematiker-Vereinigung. 118:51-56
Autor:
Krýsl, Svatopluk
Publikováno v:
J. Geom. Symmetry Phys. 42 (2016), 99-103
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=project_eucl::53cbc8019f2e68f1f3b2b520237bc75c
http://projecteuclid.org/euclid.jgsp/1496196026
http://projecteuclid.org/euclid.jgsp/1496196026
Publikováno v:
Perspectives in Scalar Curvature ISBN: 9789811249990
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::54dc139471b80c860af98982f5b9b35d
https://doi.org/10.1142/9789811273230_0014
https://doi.org/10.1142/9789811273230_0014
Publikováno v:
Communications in Mathematical Physics
Communications in Mathematical Physics, Springer Verlag, 2020, 374, pp.873-890. ⟨10.1007/s00220-019-03545-x⟩
Communications in Mathematical Physics, Springer Verlag, 2020, 374, pp.873-890. ⟨10.1007/s00220-019-03545-x⟩
Let (M, g) be an $$(n+1)$$-dimensional asymptotically locally hyperbolic manifold with a conformal compactification whose conformal infinity is $$(\partial M,[\gamma ])$$. We will first observe that $${\mathcal Ch}(M,g)\le n$$, where $${\mathcal Ch}(
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a8761ee3664dce1e0204a8e8312d303d
Publikováno v:
Comptes Rendus. Mathématique
Comptes Rendus. Mathématique, Académie des sciences (Paris), 2018, 356 (3), pp.322-326. ⟨10.1016/j.crma.2018.01.015⟩
Comptes Rendus. Mathématique, Académie des sciences (Paris), 2018, 356 (3), pp.322-326. ⟨10.1016/j.crma.2018.01.015⟩
International audience; We give a spinorial proof of a Heintze-Karcher type inequality in the hyperbolic space proved by Brendle [Br]. The proof relies on a generalized Reilly formula on spinors recently obtained in [HMR].; Sur une inégalité de Bre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::59769e7caf7c29e5dd4316f2342cac59
https://hal.archives-ouvertes.fr/hal-02281376/document
https://hal.archives-ouvertes.fr/hal-02281376/document
Autor:
Oussama Hijazi, Simon Raulot
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 3, p 119 (2007)
On a closed 4-dimensional Riemannian manifold, we give a lower bound for the square of the first eigenvalue of the Yamabe operator in terms of the total Branson's $Q$-curvature. As a consequence, if the manifold is spin, we relate the first eigenvalu
Externí odkaz:
https://doaj.org/article/a1e91d275c134a968a225c0d1c04bf29
Publikováno v:
Commun.Math.Phys.
Commun.Math.Phys., 2017, 351 (3), pp.1177-1194. ⟨10.1007/s00220-017-2837-6⟩
Commun.Math.Phys., 2017, 351 (3), pp.1177-1194. ⟨10.1007/s00220-017-2837-6⟩
International audience; In this paper, we study Dirac-type operators on time flat submanifolds in spacetimes satisfying the Einstein equations with non positive cosmological constant. We apply our results to obtain global rigidity results for n-dimen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2aa2856093ba99b2e67a26a07d8ae8db
https://hal.archives-ouvertes.fr/hal-01554635
https://hal.archives-ouvertes.fr/hal-01554635
Autor:
Oussama Hijazi
Publikováno v:
Acta Crystallographica Section A Foundations and Advances. 74:73-73
Autor:
Friedrich, Thomas
Publikováno v:
Jahresbericht der Deutschen Mathematiker-Vereinigung; Mar2016, Vol. 118 Issue 1, p51-56, 6p
Publikováno v:
Journal of Geometry and Physics
Journal of Geometry and Physics, Elsevier, 2015, 91, pp.12-28. ⟨10.1016/j.geomphys.2015.01.012⟩
Journal of Geometry and Physics, Elsevier, 2015, 91, pp.12-28. ⟨10.1016/j.geomphys.2015.01.012⟩
Suppose that $\Sigma=\partial\Omega$ is the $n$-dimensional boundary, with positive (inward) mean curvature $H$, of a connected compact $(n+1)$-dimensional Riemannian spin manifold $(\Omega^{n+1},g)$ whose scalar curvature $R\ge -n(n+1)k^2$, for some
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0b208f52946848660579cd5e8c8f6be7
https://hal.archives-ouvertes.fr/hal-01116656
https://hal.archives-ouvertes.fr/hal-01116656