Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Ourselin, S. bastien"'
Autor:
Fidon, Lucas, Aertsen, Michael, Shit, Suprosanna, Demaerel, Philippe, Ourselin, S��bastien, Deprest, Jan, Vercauteren, Tom
This paper describes our method for our participation in the FeTA challenge2021 (team name: TRABIT). The performance of convolutional neural networks for medical image segmentation is thought to correlate positively with the number of training data.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eaa9de025ae3fe55e4516af5dfa8032f
http://arxiv.org/abs/2111.02408
http://arxiv.org/abs/2111.02408
Autor:
Fidon, Lucas, Aertsen, Michael, Mufti, Nada, Deprest, Thomas, Emam, Doaa, Guffens, Fr��d��ric, Schwartz, Ernst, Ebner, Michael, Prayer, Daniela, Kasprian, Gregor, David, Anna L., Melbourne, Andrew, Ourselin, S��bastien, Deprest, Jan, Langs, Georg, Vercauteren, Tom
The performance of deep neural networks typically increases with the number of training images. However, not all images have the same importance towards improved performance and robustness. In fetal brain MRI, abnormalities exacerbate the variability
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0bf8b495c773506d256fd247838d337c
http://arxiv.org/abs/2108.04175
http://arxiv.org/abs/2108.04175
Autor:
Fidon, Lucas, Aertsen, Michael, Emam, Doaa, Mufti, Nada, Guffens, Fr��d��ric, Deprest, Thomas, Demaerel, Philippe, David, Anna L., Melbourne, Andrew, Ourselin, S��bastien, Deprest, Jan, Vercauteren, Tom
Deep neural networks have increased the accuracy of automatic segmentation, however, their accuracy depends on the availability of a large number of fully segmented images. Methods to train deep neural networks using images for which some, but not al
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fc42d02bce6bc9adeb4f506d6abeb3a8
http://arxiv.org/abs/2107.03846
http://arxiv.org/abs/2107.03846
Autor:
P��rez-Garc��a, Fernando, Scott, Catherine, Sparks, Rachel, Diehl, Beate, Ourselin, S��bastien
Detailed analysis of seizure semiology, the symptoms and signs which occur during a seizure, is critical for management of epilepsy patients. Inter-rater reliability using qualitative visual analysis is often poor for semiological features. Therefore
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e7bb71ad2f3edfcff2b1c0bd3e7d53ea
http://arxiv.org/abs/2106.12014
http://arxiv.org/abs/2106.12014
Autor:
Brudfors, Mikael, Balbastre, Ya��l, Ashburner, John, Rees, Geraint, Nachev, Parashkev, Ourselin, S��bastien, Cardoso, M. Jorge
While convolutional neural networks (CNNs) trained by back-propagation have seen unprecedented success at semantic segmentation tasks, they are known to struggle on out-of-distribution data. Markov random fields (MRFs) on the other hand, encode simpl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1e4c199080feaaa2dfd0fe5de17ef294
http://arxiv.org/abs/2104.05495
http://arxiv.org/abs/2104.05495
Autor:
Garc��a-Peraza-Herrera, Luis C., Li, Wenqi, Gruijthuijsen, Caspar, Devreker, Alain, Attilakos, George, Deprest, Jan, Poorten, Emmanuel Vander, Stoyanov, Danail, Vercauteren, Tom, Ourselin, S��bastien
Real-time tool segmentation is an essential component in computer-assisted surgical systems. We propose a novel real-time automatic method based on Fully Convolutional Networks (FCN) and optical flow tracking. Our method exploits the ability of deep
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6caaf2927dceb9f3c49610a45699d7be
http://arxiv.org/abs/2009.03016
http://arxiv.org/abs/2009.03016
Autor:
P��rez-Garc��a, Fernando, Rodionov, Roman, Alim-Marvasti, Ali, Sparks, Rachel, Duncan, John S., Ourselin, S��bastien
Resective surgery may be curative for drug-resistant focal epilepsy, but only 40% to 70% of patients achieve seizure freedom after surgery. Retrospective quantitative analysis could elucidate patterns in resected structures and patient outcomes to im
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ef066c403b56aa8067d4f5674848e5cf
http://arxiv.org/abs/2006.15693
http://arxiv.org/abs/2006.15693
Accurate segmentation of the right ventricle (RV) is a crucial step in the assessment of the ventricular structure and function. Yet, due to its complex anatomy and motion segmentation of the RV has not been as largely studied as the left ventricle.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::362b9c4aa8902a81b2cf5738d96f0a28
http://arxiv.org/abs/2004.02317
http://arxiv.org/abs/2004.02317
Publikováno v:
Shaw, R, Sudre, C H, Ourselin, S B & Cardoso, M J 2020, A Heteroscedastic Uncertainty Model for Decoupling Sources of MRI Image Quality . in T Arbel, I B Ayed, M de Bruijne, M Descoteaux, H Lombaert & C Pal (eds), Proceedings of the 3rd Conference on Medical Imaging with Deep Learning, MIDL 2020 . vol. 121, Proceedings of Machine Learning Research, ML Research Press, pp. 733-742, 3rd Conference on Medical Imaging with Deep Learning, MIDL 2020, Virtual, Online, Canada, 06/07/2020 .
Quality control (QC) of medical images is essential to ensure that downstream analyses such as segmentation can be performed successfully. Currently, QC is predominantly performed visually at significant time and operator cost. We aim to automate the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_____10172::6288ed5e80d2cfea9d86b9b6b24e3bdc
https://research.vumc.nl/en/publications/a819bac3-f653-4fa4-8e31-63f63fc63f1e
https://research.vumc.nl/en/publications/a819bac3-f653-4fa4-8e31-63f63fc63f1e
Autor:
Sudre, Carole H., Anson, Beatriz Gomez, Ingala, Silvia, Lane, Chris D., Jimenez, Daniel, Haider, Lukas, Varsavsky, Thomas, Tanno, Ryutaro, Smith, Lorna, Ourselin, S��bastien, J��ger, Rolf H., Cardoso, M. Jorge
Classification and differentiation of small pathological objects may greatly vary among human raters due to differences in training, expertise and their consistency over time. In a radiological setting, objects commonly have high within-class appeara
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fdcfab6ea88c6315a0910caacb246793
http://arxiv.org/abs/1909.01891
http://arxiv.org/abs/1909.01891