Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Ouhabaz, E. M."'
Autor:
ter Elst, A. F. M., Ouhabaz, E. M.
We consider the Dirichlet-to-Neumann operator ${\cal N}$ associated with a general elliptic operator \[ {\cal A} u = - \sum_{k,l=1}^d \partial_k (c_{kl}\, \partial_l u) + \sum_{k=1}^d \Big( c_k\, \partial_k u - \partial_k (b_k\, u) \Big) +c_0\, u \in
Externí odkaz:
http://arxiv.org/abs/2404.18272
Autor:
Bechtel, Sebastian, Ouhabaz, E. -M.
Let $\Omega$ be a bounded domain of $\mathbb{R}^{n+1}$ with $n \ge 1$. We assume that the boundary $\Gamma$ of $\Omega$ is Lipschitz. Consider the Dirichlet-to-Neumann operator $N_0$ associated with a system in divergence form of size $m$ with real s
Externí odkaz:
http://arxiv.org/abs/2207.09115
Autor:
ter Elst, A. F. M., Ouhabaz, E. M.
Let $\Omega$ be a bounded open subset with $C^{1+\kappa}$-boundary for some $\kappa > 0$. Consider the Dirichlet-to-Neumann operator associated to the elliptic operator $- \sum \partial_l ( c_{kl} \, \partial_k ) + V$, where the $c_{kl} = c_{lk}$ are
Externí odkaz:
http://arxiv.org/abs/1707.07718
We consider the maximal regularity problem for non-autonomous evolution equations of the form $u(t) + A(t) u(t) = f(t)$ with initial data $u(0) = u\_0$ . Each operator $A(t)$ is associated with a sesquilinear form $a(t; *, *)$ on a Hilbert space $H$
Externí odkaz:
http://arxiv.org/abs/1402.1136
Autor:
ter Elst, A. F. M., Ouhabaz, E. M.
We prove Poisson upper bounds for the kernel $K$ of the semigroup generated by the Dirichlet-to-Neumann operator if the underlying domain is bounded and has a $C^\infty$-boundary. We also prove Poisson bounds for $K_z$ for all $z$ in the right half-p
Externí odkaz:
http://arxiv.org/abs/1302.4199
Autor:
ter Elst, A. F. M., Ouhabaz, E. M.
Let $A = - \sum \partial_k \, c_{kl} \, \partial_l$ be a degenerate sectorial differential operator with complex bounded mesaurable coefficients. Let $\Omega \subset \mathds{R}^d$ be open and suppose that $A$ is strongly elliptic on $\Omega$. Further
Externí odkaz:
http://arxiv.org/abs/1202.2139
Autor:
ter Elst, A. F. M., Ouhabaz, E. M.
We consider degenerate differential operators $A = \displaystyle{\sum_{k,j=1}^d \partial_k (a_{kj} \partial_j)}$ on $L^2(\mathbb{R}^d)$ with real symmetric bounded measurable coefficients. Given a function $\chi \in C_b^\infty(\mathbb{R}^d)$ (respect
Externí odkaz:
http://arxiv.org/abs/1202.2136
Autor:
Bruneau, Vincent, Ouhabaz, E. -M.
Publikováno v:
Journal of Mathematical Physics 49 (2008) 093504
For general non-symmetric operators $A$, we prove that the moment of order $\gamma \ge 1$ of negative real-parts of its eigenvalues is bounded by the moment of order $\gamma$ of negative eigenvalues of its symmetric part $H = {1/2} [A + A^*].$ As an
Externí odkaz:
http://arxiv.org/abs/0806.1393
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.