Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Oualid El Hajouji"'
Autor:
Oualid El Hajouji, Ran S Sun, Alban Zammit, Keith Humphreys, Steven M Asch, Ian Carroll, Catherine M Curtin, Tina Hernandez-Boussard
Publikováno v:
PLoS Computational Biology, Vol 19, Iss 8, p e1011376 (2023)
BackgroundTreatment of surgical pain is a common reason for opioid prescriptions. Being able to predict which patients are at risk for opioid abuse, dependence, and overdose (opioid-related adverse outcomes [OR-AE]) could help physicians make safer p
Externí odkaz:
https://doaj.org/article/26b14681868a484aa0c934e7a6c83067
Autor:
Alban Zammit, Jean Coquet, Jennifer Hah, Oualid El Hajouji, Steven M Asch, Ian Carroll, Catherine M Curtin, Tina Hernandez-Boussard
Publikováno v:
PLoS ONE, Vol 18, Iss 8, p e0287697 (2023)
BackgroundOpioids are commonly prescribed for postoperative pain, but may lead to prolonged use and addiction. Diabetes impairs nerve function, complicates pain management, and makes opioid prescribing particularly challenging.MethodsThis retrospecti
Externí odkaz:
https://doaj.org/article/20ea9161de2f4c23a0d2d7f7682bb0b0
Autor:
Jean Coquet, Alban Zammit, Oualid El Hajouji, Keith Humphreys, Steven M. Asch, Thomas F. Osborne, Catherine M. Curtin, Tina Hernandez-Boussard
Publikováno v:
Frontiers in Digital Health, Vol 4 (2022)
ObjectiveThe opioid crisis brought scrutiny to opioid prescribing. Understanding how opioid prescribing patterns and corresponding patient outcomes changed during the epidemic is essential for future targeted policies. Many studies attempt to model t
Externí odkaz:
https://doaj.org/article/aa6119688e964d82b6814380fe9cf97d
Autor:
Alban Zammit, Jean Coquet, Jennifer Hah, Oualid El Hajouji, Steven M. Asch, Ian Carroll, Catherine Curtin, Tina Hernandez-Boussard
Publikováno v:
SSRN Electronic Journal.
Publikováno v:
Communications in Computer and Information Science ISBN: 9783030923068
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1b5c170e7a00c539add444c6a84349a5
https://doi.org/10.1007/978-3-030-92307-5_71
https://doi.org/10.1007/978-3-030-92307-5_71
Publikováno v:
Machine Learning and Knowledge Discovery in Databases. Research Track ISBN: 9783030865191
ECML/PKDD (2)
ECML/PKDD (2)
In recent years, significant work has been done to include fairness constraints in the training objective of machine learning algorithms. Differently from classical prediction retreatment algorithms, we focus on learning fair representations of the i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a4831f5135ab40c29eee93f7c2002bd9
https://doi.org/10.1007/978-3-030-86520-7_46
https://doi.org/10.1007/978-3-030-86520-7_46