Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Ott, Katharine A."'
Autor:
Brown, Russell M., Ott, Katharine A.
We consider a class of Brascamp-Lieb forms and give conditions which guarantee the boundedness of these form on $L^p$-spaces with weights that are a power of the distance to the origin. These conditions are close to necessary and sufficient.
Externí odkaz:
http://arxiv.org/abs/2306.12342
We establish a set of necessary conditions and a set of sufficient conditions for boundedness of a family of Brascamp-Lieb forms in Lorentz spaces and $L^p$-spaces with power weights. The conditions are close to optimal.
Comment: 15 pages, updat
Comment: 15 pages, updat
Externí odkaz:
http://arxiv.org/abs/1807.07040
Autor:
Ott, Katharine A., Brown, Russell M.
Publikováno v:
J. Diff. Equations, 254 (2013), 4373-4400
We consider the mixed problem for $L$ the Lam\'e system of elasticity in a bounded Lipschitz domain $ \Omega\subset\reals ^2$. We suppose that the boundary is written as the union of two disjoint sets, $\partial\Omega =D\cup N$. We take traction data
Externí odkaz:
http://arxiv.org/abs/1211.3655
Publikováno v:
Trans. Amer. Math. Soc., 365 (2013), 2895-2930
This paper continues the study of the mixed problem for the Laplacian. We consider a bounded Lipschitz domain $\Omega\subset \reals^n$, $n\geq2$, with boundary that is decomposed as $\partial\Omega=D\cup N$, $D$ and $N$ disjoint. We let $\Lambda$ den
Externí odkaz:
http://arxiv.org/abs/1111.1468
Autor:
Ott, Katharine A., Brown, Russell M.
Publikováno v:
Potential analysis, 38 (2013), 1333-1364 (reference is for the original paper)
We consider the mixed boundary value problem or Zaremba's problem for the Laplacian in a bounded Lipschitz domain in R^n. We specify Dirichlet data on part of the boundary and Neumann data on the remainder of the boundary. We assume that the boundary
Externí odkaz:
http://arxiv.org/abs/0909.0061
Autor:
Ott, Katharine A.
Publikováno v:
Notices of the American Mathematical Society; Jun/Jul2024, Vol. 71 Issue 6, p761-764, 4p
Autor:
Mitrea, Irina, Ott, Katharine
Publikováno v:
Proceedings of the American Mathematical Society, 2007 Jul 01. 135(7), 2037-2043.
Externí odkaz:
http://dx.doi.org/10.1090/S0002-9939-07-08686-8
Autor:
Green, William R., Ott, Katharine A.
Publikováno v:
Notices of the American Mathematical Society; Apr2023, Vol. 70 Issue 4, p603-605, 3p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ott, Katharine A., Brown, Russell M.
Publikováno v:
Potential Analysis; 2021, Vol. 54 Issue 1, p213-217, 5p