Zobrazeno 1 - 10
of 145
pro vyhledávání: '"Ostrovskii, M. A."'
Autor:
Ostrovskii, M. I.
Publikováno v:
Discrete Mathematics, 310 (2010), no. 6-7, 1204-1209
The main purpose of the paper is to develop an approach to evaluation or estimation of the spanning tree congestion of planar graphs. This approach is used to evaluate the spanning tree congestion of triangular grids.
Externí odkaz:
http://arxiv.org/abs/0909.3903
Autor:
Ostrovskii, M. I.
Publikováno v:
Comptes rendus de l'Academie bulgare des Sciences, 62 (2009), 415--420
The main purpose of the paper is to find some expansion properties of locally finite metric spaces which do not embed coarsely into a Hilbert space. The obtained result is used to show that infinite locally finite graphs excluding a minor embed coars
Externí odkaz:
http://arxiv.org/abs/0903.0607
Autor:
Ostrovskii, M. I., Shulman, V. S.
Publikováno v:
Integral Equations and Operator Theory 65 (2009), 551-572
Let $K$ be an absolutely convex infinite-dimensional compact in a Banach space $\mathcal{X}$. The set of all bounded linear operators $T$ on $\mathcal{X}$ satisfying $TK\supset K$ is denoted by $G(K)$. Our starting point is the study of the closure $
Externí odkaz:
http://arxiv.org/abs/0902.3483
Publikováno v:
Quarterly J. Math. (Oxford), 62 (2011), 173-187
A new technique for proving fixed point theorems for families of holomorphic transformations of operator balls is developed. One of these theorems is used to show that a bounded representation in a real or complex Hilbert space is orthogonalizable or
Externí odkaz:
http://arxiv.org/abs/0902.1784
Autor:
Ostrovskii, M. I.
Publikováno v:
Rocky Mountain Journal of Mathematics, 38 (2008), no. 4, 1253-1262
A necessary and sufficient condition for existence of a Banach space with a finite dimensional decomposition but without the $\pi$-property in terms of norms of compositions of projections is found.
Externí odkaz:
http://arxiv.org/abs/0811.1763
Publikováno v:
Journal of Functional Analysis, 257 (2009), pp. 2476-2496
We show that the open unit ball of the space of operators from a finite dimensional Hilbert space into a separable Hilbert space (we call it "operator ball") has a restricted form of normal structure if we endow it with a hyperbolic metric (which is
Externí odkaz:
http://arxiv.org/abs/0811.1759
Autor:
Ostrovskii, M. I.
Publikováno v:
J. Funct. Anal. 255 (2008), no. 3, 589-619
Let $B_Y$ denote the unit ball of a normed linear space $Y$. A symmetric, bounded, closed, convex set $A$ in a finite dimensional normed linear space $X$ is called a {\it sufficient enlargement} for $X$ if, for an arbitrary isometric embedding of $X$
Externí odkaz:
http://arxiv.org/abs/0811.1701
Autor:
Ostrovskii, M. I.
Publikováno v:
Topology Proceedings 33 (2009) pp. 163-183
The main purposes of this paper are (1) To survey the area of coarse embeddability of metric spaces into Banach spaces, and, in particular, coarse embeddability of different Banach spaces into each other; (2) To present new results on the problems: (
Externí odkaz:
http://arxiv.org/abs/0802.3666
Autor:
Ostrovskii, M. I.
Publikováno v:
in: "General Topology in Banach Spaces", ed. by T. Banakh and A. Plichko, Nova Science, New York, 2001, pp. 21-34
Let X be a Banach space. Given a subset A of the dual space X* denote by $A_{(1)}$ the weak* sequential closure of A, i.e., the set of all limits of weak*-convergent sequences in A. The study of weak* sequential closures of linear subspaces of the du
Externí odkaz:
http://arxiv.org/abs/math/0203139
Autor:
Ostrovskii, M. I.
Publikováno v:
Archiv der Mathematik, 71 (1998), 315-324
Definition. A symmetric with respect to 0 bounded closed convex set A in a finite dimensional normed space X is called a sufficient enlargement for X (or of B(X)) if for arbitrary isometric embedding of X into a Banach space Y there exists a projecti
Externí odkaz:
http://arxiv.org/abs/math/0203085