Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Ostroukhova, Olga"'
Autor:
Ahmad, Kashif, Pogorelov, Konstantin, Riegler, Michael, Ostroukhova, Olga, Halvorsen, Paal, Conci, Nicola, Dahyot, Rozenn
This paper addresses the problem of floods classification and floods aftermath detection utilizing both social media and satellite imagery. Automatic detection of disasters such as floods is still a very challenging task. The focus lies on identifyin
Externí odkaz:
http://arxiv.org/abs/1901.03298
Autor:
Jha, Debesh, Ali, Sharib, Hicks, Steven, Thambawita, Vajira, Borgli, Hanna, Smedsrud, Pia H., de Lange, Thomas, Pogorelov, Konstantin, Wang, Xiaowei, Harzig, Philipp, Tran, Minh-Triet, Meng, Wenhua, Hoang, Trung-Hieu, Dias, Danielle, Ko, Tobey H., Agrawal, Taruna, Ostroukhova, Olga, Khan, Zeshan, Atif Tahir, Muhammad, Liu, Yang, Chang, Yuan, Kirkerød, Mathias, Johansen, Dag, Lux, Mathias, Johansen, Håvard D., Riegler, Michael A., Halvorsen, Pål
Publikováno v:
In Medical Image Analysis May 2021 70
Autor:
Pogorelov, Konstantin, Riegler, Michael, Halvorsen, Pål, Hicks, Steven, Randel, Kristin Ranheim, Dang Nguyen, Duc Tien, Lux, Mathias, Ostroukhova, Olga, de Lange, Thomas
Publikováno v:
CEUR Workshop Proceedings
The Medico: Multimedia for Medicine Task, running for the second time as part of MediaEval 2018, focuses on detecting abnormalities, diseases, anatomical landmarks and other findings in images captured by medical devices in the gastrointestinal tract
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::6dd6477b2b61067ed437c3774b2778b3
https://hdl.handle.net/1956/20930
https://hdl.handle.net/1956/20930
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Pogorelov, Konstantin, Ostroukhova, Olga, Jeppsson, Mattis, Espeland, Håvard, Griwodz, Carsten, de Lange, Thomas, Riegler, Michael, Halvorsen, Pål
Publikováno v:
Pogorelov, K., Ostroukhova, O., Jeppsson, M., Espeland, H., Griwodz, C., de Lange, T., ... Halvorsen, P. (2018). Deep learning and hand-crafted feature based approaches for polyp detection in medical videos. IEEE International Symposium on Computer-Based Medical Systems, 2018, 381-386.
Externí odkaz:
https://hdl.handle.net/10037/14626
Autor:
Pogorelov, Konstantin, Riegler, Michael, Halvorsen, Pål, Griwodz, Carsten, de Lange, Thomas, Randel, Kristin, Eskeland, Sigrun, Dang-Nguyen, Duc-Tien, Ostroukhova, Olga, Lux, Mathias, Spampinato, Concetto
Publikováno v:
Pogorelov, Konstantin, Riegler, Michael, Halvorsen, Pål, Griwodz, Carsten, de Lange, Thomas, Randel, Kristin, Eskeland, Sigrun, Dang-Nguyen, Duc-Tien ORCID: 0000-0002-2761-2213 , Ostroukhova, Olga, Lux, Mathias and Spampinato, Concetto (2017) A comparison of deep learning with global features for gastrointestinal disease detection. In: MediaEval 2017 Multimedia Benchmark Workshop, 13-16 Sept 2017, Dublin, Ireland.
This paper presents our approach for the 2017 Multimedia for Medicine Medico Task of the MediaEval 2017 Benchmark. We pro- pose a system based on global features and deep neural networks, and preliminary results comparing the approaches are presented
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______119::85b6ed987d6e6f52869e583e7bf4a33e
http://doras.dcu.ie/22033/
http://doras.dcu.ie/22033/