Zobrazeno 1 - 10
of 408
pro vyhledávání: '"Osipov D. V."'
Autor:
Osipov, D. V.
Publikováno v:
Izvestiya: Mathematics, 2024, volume 88, issue 5, pp. 930-976
We prove a local analog of the Deligne-Riemann-Roch isomorphism in the case of line bundles and relative dimension $1$. This local analog consists in computation of the class of $12$th power of the determinant central extension of a group ind-scheme
Externí odkaz:
http://arxiv.org/abs/2308.06049
Autor:
Osipov, D. V.
Publikováno v:
Proc. Steklov Inst. Math. vol. 320 (2023), pp. 226-257
The Bott-Thurston cocycle is a $2$-cocycle on the group of orientation-preserving diffeomorphisms of the circle. We introduce and study a formal analog of Bott-Thurston cocycle. The formal Bott-Thurston cocycle is a $2$-cocycle on the group of contin
Externí odkaz:
http://arxiv.org/abs/2211.15932
Autor:
Osipov, D. V.
Publikováno v:
Sbornik: Mathematics, 213:5 (2022), 671-693
We study canonical central extensions of the general linear group of the ring of adeles on a smooth projective algebraic surface $X$ by means of the group of integers. By these central extensions and adelic transition matrices of a rank $n$ locally f
Externí odkaz:
http://arxiv.org/abs/2105.14626
Autor:
Osipov, D. V., Parshin, A. N.
Publikováno v:
Sbornik: Mathematics, 211:1 (2020), 115-160
In this work we construct harmonic analysis on free Abelian groups of rank $2$, namely: we construct and investigate spaces of functions and distributions, Fourier transforms, actions of discrete and extended discrete Heisenberg groups. In case of th
Externí odkaz:
http://arxiv.org/abs/1911.09718
Autor:
Osipov, D. V., Zheglov, A. B.
Publikováno v:
Siberian Mathematical Journal, Volume 60, Issue 4, 2019, pp. 592-604
In the paper Lax pairs for linear Hamiltonian systems of differential equations are constructed. In particular, Gr\"obner bases are used for the computations. It is proved that the maps which appear in the construction of Lax pairs are Poisson. Vario
Externí odkaz:
http://arxiv.org/abs/1901.11130
Autor:
Osipov, D. V.
Publikováno v:
Izvestiya: Mathematics, 2018, 82:4, 817-836
We explicitly calculate an arithmetic adelic quotient group for a locally free sheaf on an arithmetic surface when the fiber over the infinite point of the base is taken into account. The calculations are presented via a short exact sequence. We rela
Externí odkaz:
http://arxiv.org/abs/1801.02282
Autor:
Osipov, D. V.
Publikováno v:
St. Petersburg Mathematical Journal, 30 (2019), 111-122
We calculate explicitly an adelic quotient group for an excellent Noetherian normal integral two-dimensional separated scheme. An application to an irreducible normal projective algebraic surface over a field is given.
Comment: 15 pages
Comment: 15 pages
Externí odkaz:
http://arxiv.org/abs/1706.09826
Autor:
Osipov, D. V.
Publikováno v:
Bull. Korean Math. Soc. 2017 Vol. 54, No. 5, 1699 - 1718
We give a construction of the second Chern number of a vector bundle over a smooth projective surface by means of adelic transition matrices for the vector bundle. The construction does not use an algebraic $K$-theory and depends on the canonical $\m
Externí odkaz:
http://arxiv.org/abs/1706.07354
Autor:
Osipov, D. V., Parshin, A. N.
Publikováno v:
Proc. Steklov Inst. Math., vol. 292 (2016), pp. 185 - 201
We study a natural action of the Heisenberg group of integer unipotent matrices of the third order on distribution space of a two-dimensional local field for a flag on a two-dimensional scheme.
Comment: 21 pages, to appear in Proc. Steklov Inst.
Comment: 21 pages, to appear in Proc. Steklov Inst.
Externí odkaz:
http://arxiv.org/abs/1510.02423
Autor:
Gorchinskiy, S. O., Osipov, D. V.
Publikováno v:
Proc. Steklov Inst. Math. vol. 290 (2015), pp. 26-34
We prove that the tangent space to the $(n+1)$-th Milnor $K$-group of a ring $R$ is isomorphic to group of $n$-th absolute K\"ahler differentials of $R$ when the ring $R$ contains $\frac{1}{2}$ and has sufficiently many invertible elements. More prec
Externí odkaz:
http://arxiv.org/abs/1505.03780