Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Oscar Mario Salinas"'
Publikováno v:
Potential Analysis. 57:401-431
In this work we search for boundedness results for operators related to the semigroup generated by the degenerate Schrodinger operator ${{\mathscr{L}}} u = -\frac {1}{\omega } \text {div} A\cdot \nabla u +V u$ , where ω is a weight, A is a matrix de
Publikováno v:
Forum Mathematicum. 32:1415-1439
We introduce classes of pairs of weights closely related to Schrödinger operators, which allow us to get two-weight boundedness results for the Schrödinger fractional integral and its commutators. The techniques applied in the proofs strongly rely
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
In this article we prove that the fractional integral operator associated to the Schrödinger second order differential operator L-α/2=(-Δ + V)-α/2maps with continuity weak Lebesgue space Lp,∞(v) into weighted Campanato-Hölder type spaces BMOβ
Publikováno v:
Journal d'Analyse Mathématique. 138:301-324
For a proper open set $Omega$ immersed in a metric space with the weak homogeneity property, and given a measure $mu$ doubling on a certain family of balls lying ``well inside´´ of $Omega$, we introduce local operators of singular and fractional ty
Publikováno v:
Mathematische Annalen. 358:609-628
For a proper open set $$\Omega $$ immersed in a metric space with the weak homogeneity property, and given a measure $$\mu $$ doubling on a certain family of balls lying “well inside” of $$\Omega $$ , we introduce a local maximal function and cha
Publikováno v:
Journal of Mathematical Analysis and Applications. 403:95-106
We give conditions on p(·) in order to assure boundedness of the fractional integral operator I_alpha from strong and weak L^p(·) spaces into suitable integral Lipschitz--type spaces. Fil: Ramseyer, Mauricio Javier. Consejo Nacional de Investigacio
Publikováno v:
Journal of Mathematical Analysis and Applications. 392:6-22
In this work we obtain weighted and weak estimates for the commutator of the Riesz transforms associated to a Schrödinger operator , where V satisfies some reverse-Hölder inequality. The classes of weights as well as the classes of symbols are larg
Publikováno v:
Journal of Mathematical Analysis and Applications. 342:950-969
In this paper we characterize the weighted BMO ( ω ) ( X ) , with X a space of homogeneous type, through an adequate weighted Carleson measure. As a byproduct we can define the weighted Triebel–Lizorkin space F ˙ ∞ 0 , 2 ( ω ) ( X ) and obtain
For a local maximal function defined on a certain family of cubes lying “well inside” of Ω , a proper open subset of Rn, we characterize the couple of weights (u, v) for which it is bounded from Lp(v) on Lq(u). Fil: Salinas, Oscar Mario. Consejo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7b35054a560fba4e1f0e2a2ba637b94f
We study weighted modular inequalities for a generalized maximal operator associated to a Young function in the context of spaces of homogeneous type. We prove the equivalence between these inequalities and a Dini-type condition, which involves the f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6518bf7fa82500d8bdd158d4dd990150
https://link.springer.com/article/10.1007/s13348-010-0027-3
https://link.springer.com/article/10.1007/s13348-010-0027-3