Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Osanobu Yamada"'
Autor:
Hiroshi T. Ito, Osanobu Yamada
Publikováno v:
Sugaku Expositions. 33:111-133
Publikováno v:
Mathematische Nachrichten. 292:106-120
Explicit and partly sharp estimates are given of integrals over the square of Bessel functions with an integrable weight which can be singular at the origin. They are uniform with respect to the order of the Bessel functions and provide explicit boun
Publikováno v:
Documenta Mathematica. 20:37-64
Autor:
Hubert Kalf, Osanobu Yamada
Publikováno v:
Journal of Mathematical Physics. 42:2667-2676
We give some results about the essential self-adjointness of the Dirac operator $$ H = \sum\limits_{j = 1}^n {\alpha _j p_j } + m\left( x \right)\alpha _{n + 1} + V\left( x \right)I_N \left( {N = 2^{\left[ {\tfrac{{n + 1}} {2}} \right]} } \right), $$
Autor:
Hubert Kalf, Osanobu Yamada
Publikováno v:
Publications of the Research Institute for Mathematical Sciences. 35:847-852
Autor:
Osanobu Yamada, Masaharu Arai
Publikováno v:
Publications of the Research Institute for Mathematical Sciences. 30:1-14
Autor:
Osanobu Yamada, Hiroshi T. Ito
Publikováno v:
J. Math. Soc. Japan 63, no. 4 (2011), 1311-1357
We investigate the spectral properties of the Dirac operator with a potential V(x) and two relativistic Schrödinger operators with V(x) and -V(x), respectively. The potential V(x) is assumed to be dilation analytic and diverge at infinity. Our appro
Autor:
Jun Uchiyama, Osanobu Yamada
Publikováno v:
Publications of the Research Institute for Mathematical Sciences. 26:419-449
~ + J^bi(x)aiJ(x) + ^ ij=i\oxi J \dXj ) where the matrix (atj(x)) is uniformly positive definite, b{(x) (1 0, y i 0, lim?/(r) = 09 a(r)-\rq2(x)
Autor:
Monika Winklmeier, Osanobu Yamada
We investigate the existence of time-periodic solutions of the Dirac equation in the Kerr-Newman background metric. To this end, the solutions are expanded in a Fourier series with respect to the time variable $t$ and the Chandrasekhar separation ans
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::37910d86bf4ff779cf3d3f7d5ed1014c
Autor:
Osanobu Yamada, Hiroshi T. Ito
Publikováno v:
Proc. Japan Acad. Ser. A Math. Sci. 81, no. 10 (2005), 157-161
We study the nonrelativistic limit of Dirac operators from the viewpoint of the spectral relationship between Dirac operators and Pauli operators. We show that Dirac operators have spectral concentration about eigenvalues of Pauli operators for a lar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::248bb69437845f753ce562b26938a70b
http://projecteuclid.org/euclid.pja/1135791767
http://projecteuclid.org/euclid.pja/1135791767