Zobrazeno 1 - 10
of 346
pro vyhledávání: '"Osamu Iyama"'
Publikováno v:
Transactions of the American Mathematical Society, Series B. 10:542-612
The aim of this paper is to establish a lattice theoretical framework to study the partially ordered set t o r s A \mathsf {tors} A of torsion classes over a finite-dimensional algebra A A . We show that t o r s A \mathsf {tors} A is a complete latti
Publikováno v:
Forum of Mathematics, Sigma, Vol 8 (2020)
In representation theory, commutative algebra and algebraic geometry, it is an important problem to understand when the triangulated category $\mathsf{D}_{\operatorname{sg}}^{\mathbb{Z}}(R)=\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ admits a t
Externí odkaz:
https://doaj.org/article/7762d9ca4d2f4fd8841112d922cb4887
Autor:
Osamu Iyama, Michael Wemyss
Publikováno v:
Épijournal de Géométrie Algébrique, Vol Volume 3 (2020)
In this paper we study rational surface singularities R with star shaped dual graphs, and under very mild assumptions on the self-intersection numbers we give an explicit description of all their special Cohen-Macaulay modules. We do this by realisin
Externí odkaz:
https://doaj.org/article/9540d18b2a334e2a813718fdbdac558a
Autor:
Osamu Iyama, Haibo Jin
Publikováno v:
International Mathematics Research Notices. 2023:6624-6647
We establish a bijection between $d$-simple-minded systems ($d$-SMSs) of $(-d)$-Calabi–Yau cluster category $\mathcal C_{-d}(H)$ and silting objects of ${\mathcal {D}}^{\mathrm {b}}(H)$ contained in ${\mathcal {D}}^{\le 0}\cap {\mathcal {D}}^{\ge 1
Publikováno v:
Journal of Algebraic Geometry. 29:729-751
Let R R be a Cohen–Macaulay normal domain with a canonical module ω R \omega _R . It is proved that if R R admits a noncommutative crepant resolution (NCCR), then necessarily it is Q \mathds {Q} -Gorenstein. Writing S S for a Zariski local canonic
Autor:
Xiaojin Zhang, Osamu Iyama
Publikováno v:
Pacific Journal of Mathematics. 298:399-416
For a finite dimensional algebra $\Lambda$ and a non-negative integer $n$, we characterize when the set $\tilt_n\Lambda$ of additive equivalence classes of tilting modules with projective dimension at most $n$ has a minimal (or equivalently, minimum)
Publikováno v:
Advances in Mathematics. 345:222-262
We introduce a new family of algebras, called Serre-formal algebras. They are Iwanaga–Gorenstein algebras for which applying any power of the Serre functor on any indecomposable projective module, the result remains a stalk complex. Typical example
Autor:
Michael Wemyss, Osamu Iyama
Publikováno v:
Épijournal de Géométrie Algébrique. 3
In this paper we study rational surface singularities R with star shaped dual graphs, and under very mild assumptions on the self-intersection numbers we give an explicit description of all their special Cohen-Macaulay modules. We do this by realisin
Publikováno v:
Transactions of the American Mathematical Society, Series B. 1/30/2024, Vol. 11, p248-305. 58p.