Zobrazeno 1 - 10
of 235
pro vyhledávání: '"Ortega Cerdà, Joaquim"'
In this paper, we study the stability of the concentration inequality for one-dimensional complex polynomials. We provide the stability of the local concentration inequality and a global version using a Wehrl-type entropy.
Externí odkaz:
http://arxiv.org/abs/2408.07424
We study the function $\varphi_1$ of minimal $L^1$ norm among all functions $f$ of exponential type at most $\pi$ for which $f(0)=1$. This function, first studied by H\"{o}rmander and Bernhardsson in 1993, has only real zeros $\pm \tau_n$, $n=1,2, \l
Externí odkaz:
http://arxiv.org/abs/2407.00970
We study sampling and interpolation arrays with multiplicities for the spaces P_k of holomorphic polynomials of degree at most k. We find that the geometric conditions satisfied by these arrays are in accordance with the conditions satisfied by the s
Externí odkaz:
http://arxiv.org/abs/2405.19945
Publikováno v:
International Mathematics Research Notices, Vol. 2024, Issue 19, p. 12869-12903
We study the asymptotic behavior of the fluctuations of smooth and rough linear statistics for determinantal point processes on the sphere and on the Euclidean space. The main tool is the generalization of some norm representation results for functio
Externí odkaz:
http://arxiv.org/abs/2311.03204
We provide a sharp monotonicity theorem about the distribution of subharmonic functions on manifolds, which can be regarded as a new, measure theoretic form of the uncertainty principle. As an illustration of the scope of this result, we deduce contr
Externí odkaz:
http://arxiv.org/abs/2212.14008
Publikováno v:
J. Anal. Math. 153 (2024), no. 2, 595--670
We study the norm of point evaluation at the origin in the Paley--Wiener space $PW^p$ for $0 < p < \infty$, i. e., we search for the smallest positive constant $C$, called $\mathscr{C}_p$, such that the inequality $|f(0)|^p \leq C \|f\|_p^p$ holds fo
Externí odkaz:
http://arxiv.org/abs/2210.13922
Publikováno v:
Mathematische Zeitschrift 302, 1409-1428 (2022)
We study the relation between Marcinkiewicz-Zygmund families for polynomials in a weighted $L^2$-space and sampling theorems for entire functions in the Fock space and the dual relation between uniform interpolating families for polynomials and inter
Externí odkaz:
http://arxiv.org/abs/2109.11825
Publikováno v:
Algebra i Analiz 34 (2022), no. 3, 131--158 or St. Petersburg Math. J. 34 (2023), no. 3, 405--425
A Hilbert point in $H^p(\mathbb{T}^d)$, for $d\geq1$ and $1\leq p \leq \infty$, is a nontrivial function $\varphi$ in $H^p(\mathbb{T}^d)$ such that $\| \varphi \|_{H^p(\mathbb{T}^d)} \leq \|\varphi + f\|_{H^p(\mathbb{T}^d)}$ whenever $f$ is in $H^p(\
Externí odkaz:
http://arxiv.org/abs/2106.07532
Publikováno v:
Geom. Funct. Anal. 31 (2021), no. 6, 1377--1413
We describe the idempotent Fourier multipliers that act contractively on $H^p$ spaces of the $d$-dimensional torus $\mathbb{T}^d$ for $d\geq 1$ and $1\leq p \leq \infty$. When $p$ is not an even integer, such multipliers are just restrictions of cont
Externí odkaz:
http://arxiv.org/abs/2103.16186
Publikováno v:
Comput. Methods Funct. Theory 21 (2021), no. 4, 831-849
Let $\Omega$ be a convex open set in $\mathbb R^n$ and let $\Lambda_k$ be a finite subset of $\Omega$. We find necessary geometric conditions for $\Lambda_k$ to be interpolating for the space of multivariate polynomials of degree at most $k$. Our res
Externí odkaz:
http://arxiv.org/abs/2101.08064