Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Oronzio, Francesca"'
Let $(M, g)$ be a complete, connected, non-compact Riemannian $3$-manifold. Suppose that $(M,g)$ satisfies the Ricci--pinching condition $\mathrm{Ric}\geq\varepsilon\mathrm{R} g$ for some $\varepsilon>0$, where $\mathrm{Ric}$ and $\mathrm{R}$ are the
Externí odkaz:
http://arxiv.org/abs/2409.05078
We study the asymptotic behavior of the volume preserving mean curvature and the Mullins-Sekerka flat flow in three dimensional space. Motivated by this we establish a 3D sharp quantitative version of the Alexandrov inequality for $C^2$-regular sets
Externí odkaz:
http://arxiv.org/abs/2406.17691
Autor:
Oronzio, Francesca
We show an improvement of Bray sharp mass-capacity inequality and Bray-Miao sharp upper bound of the capacity of the boundary in terms of its area, for three-dimensional, complete, one-ended asymptotically flat manifolds with compact, connected bound
Externí odkaz:
http://arxiv.org/abs/2208.06688
We provide a new proof of the Riemannian Penrose inequality for time-symmetric asymptotically flat initial data with a single black-hole horizon. The proof proceeds through a newly established monotonicity formula holding along the level sets of the
Externí odkaz:
http://arxiv.org/abs/2205.11642
In this paper, we prove that associated with a sub-static asymptotically flat manifold endowed with a harmonic potential there is a one-parameter family $\{F_{\beta}\}$ of functions which are monotone along the level-set flow of the potential. Such m
Externí odkaz:
http://arxiv.org/abs/2012.10164
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Rendiconti Lincei - Matematica e Applicazioni; 2023, Vol. 34 Issue 3, p715-726, 12p
We provide a new proof of the Riemannian Penrose inequality for time-symmetric asymptotically flat initial data with a single black-hole horizon. The proof proceeds through a newly established monotonicity formula holding along the level sets of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cca43268e44b9989a46e7a1b1da1a024
http://arxiv.org/abs/2205.11642
http://arxiv.org/abs/2205.11642