Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Ormes, Nicholas"'
Autor:
Ash, Drew D., Ormes, Nicholas
In this paper we study speedups of dynamical systems in the topological category. Specifically, we characterize when one minimal homeomorphism on a Cantor space is the speedup of another. We go on to provide a characterization for strong speedups, i.
Externí odkaz:
http://arxiv.org/abs/2208.07854
We bound the number of distinct minimal subsystems of a given transitive subshift of linear complexity, continuing work of Ormes and Pavlov [7]. We also bound the number of generic measures such a subshift can support based on its complexity function
Externí odkaz:
http://arxiv.org/abs/1907.06325
This paper explores the range of bounded speedups in the topological category. Bounded speedups represent both a strengthening of topological speedups as defined in [A 16] and a generalization of powers of a transformation. Here we show that bounded
Externí odkaz:
http://arxiv.org/abs/1610.03537
A minimal Cantor system is said to be self-induced whenever it is conjugate to one of its induced systems. Substitution subshifts and some odometers are classical examples, and we show that these are the only examples in the equicontinuous or expansi
Externí odkaz:
http://arxiv.org/abs/1511.01320
Autor:
Ormes, Nicholas, Vojtěchovský, Petr
Publikováno v:
Comment. Math. Univ. Carolin. 48 (2007), no. 1, 25-40
A groupoid is alternative if it satisfies the alternative laws $x(xy)=(xx)y$ and $x(yy)=(xy)y$. These laws induce four partial maps on $\mathbb{N}^+\times \mathbb{N}^+$, $(r,\,s)\mapsto (2r,\,s-r)$, $(r-s,\,2s)$, $(r/2,\,s+r/2)$, $(r+s/2,\,s/2)$ that
Externí odkaz:
http://arxiv.org/abs/1509.05698
Autor:
Frick, Sarah1 (AUTHOR), Ormes, Nicholas2 (AUTHOR) nicholas.ormes@du.edu, Dolph, Toni3 (AUTHOR)
Publikováno v:
Dynamical Systems: An International Journal. May2024, p1-23. 23p. 8 Illustrations.
C*-Algebraic Characterization of Bounded Orbit Injection Equivalence for Minimal Free Cantor Systems
Publikováno v:
Rocky Mountain Journal of Mathematics 42 ( 2012 ) 1, pp. 157--200
Bounded orbit injection equivalence is an equivalence relation defined on minimal free Cantor systems which is a candidate to generalize flip Kakutani equivalence to actions of the Abelian free groups on more than one generator. This paper characteri
Externí odkaz:
http://arxiv.org/abs/0903.1881
Autor:
Ash, Drew D., Ormes, Nicholas S.
Publikováno v:
Israel Journal of Mathematics; May2024, Vol. 261 Issue 1, p91-126, 36p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of the American Mathematical Society, 2000 Oct 01. 13(4), 773-806.
Externí odkaz:
https://www.jstor.org/stable/2646131