Zobrazeno 1 - 10
of 108
pro vyhledávání: '"Ormerod, John T."'
Mixed-effects regression models represent a useful subclass of regression models for grouped data; the introduction of random effects allows for the correlation between observations within each group to be conveniently captured when inferring the fix
Externí odkaz:
http://arxiv.org/abs/2409.14646
A fast Bayesian method that seamlessly fuses classification and hypothesis testing via discriminant analysis is developed. Building upon the original discriminant analysis classifier, modelling components are added to identify discriminative variable
Externí odkaz:
http://arxiv.org/abs/1812.06605
Publikováno v:
Computational Statistics and Data Analysis, 142 (106817) (2020)
Variable selection and classification are common objectives in the analysis of high-dimensional data. Most such methods make distributional assumptions that may not be compatible with the diverse families of distributions data can take. A novel Bayes
Externí odkaz:
http://arxiv.org/abs/1812.03648
We introduce a new class of priors for Bayesian hypothesis testing, which we name "cake priors". These priors circumvent Bartlett's paradox (also called the Jeffreys-Lindley paradox); the problem associated with the use of diffuse priors leading to n
Externí odkaz:
http://arxiv.org/abs/1710.09146
Publikováno v:
In Computational Statistics and Data Analysis February 2020 142
Autor:
Lin, Yingxin, Ghazanfar, Shila, Wang, Kevin Y. X., Gagnon-Bartsch, Johann A., Lo, Kitty K., Su, Xianbin, Han, Ze-Guang, Ormerod, John T., Speed, Terence P., Yang, Pengyi, Yang, Jean Yee Hwa
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America, 2019 May . 116(20), 9775-9784.
Externí odkaz:
https://www.jstor.org/stable/26705211
Autor:
Luts, Jan, Ormerod, John T.
A mean field variational Bayes approach to support vector machines (SVMs) using the latent variable representation on Polson & Scott (2012) is presented. This representation allows circumvention of many of the shortcomings associated with classical S
Externí odkaz:
http://arxiv.org/abs/1305.2667
Publikováno v:
Journal of Statistical Computation & Simulation; Mar2024, Vol. 94 Issue 5, p1016-1034, 19p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Computational and Graphical Statistics, 2017 Mar 01. 26(1), 35-43.
Externí odkaz:
https://www.jstor.org/stable/44861928