Zobrazeno 1 - 10
of 62
pro vyhledávání: '"Orlando Lee"'
Autor:
Lucas I. B. Freitas, Orlando Lee
Publikováno v:
Open Journal of Discrete Mathematics. 12:29-46
Publikováno v:
Discrete Mathematics. 346:113458
Let $D$ be a digraph. A stable set $S$ of $D$ and a path partition $\mathcal{P}$ of $D$ are orthogonal if every path $P \in \mathcal{P}$ contains exactly one vertex of $S$. In 1982, Berge defined the class of $α$-diperfect digraphs. A digraph $D$ is
Publikováno v:
Graphs and Combinatorics. 37:2697-2701
The number $Z(n):=\lfloor n/2\rfloor\lfloor (n-1)/2\rfloor$ is the smallest number of crossings in a simple planar drawing of $K_{2,n}$ in which both vertices on the 2-side have the same clockwise rotation. For two vertices $u,v$ on the $q$-side of a
Publikováno v:
Graphs and Combinatorics. 38
Let $D$ be a digraph. A subset $S$ of $V(D)$ is a stable set if every pair of vertices in $S$ is non-adjacent in $D$. A collection of disjoint paths $\mathcal{P}$ of $D$ is a path partition of $V(D)$, if every vertex in $V(D)$ is on a path of $\mathc
Publikováno v:
Procedia Computer Science. 195:5-11
Publikováno v:
Discrete Applied Mathematics. 281:172-194
In this paper we study some generalizations of the parking permit problem (Meyerson, FOCS’05), in which we are given a demand r t ∈ { 0 , 1 } for instant of time t = 0 , … , T − 1 , along with K permit types with lengths of time δ 1 , … ,
Publikováno v:
LATIN 2022: Theoretical Informatics ISBN: 9783031206238
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d1543da3e7498c31010a8f5e65d581b6
https://doi.org/10.1007/978-3-031-20624-5_28
https://doi.org/10.1007/978-3-031-20624-5_28
Publikováno v:
Discrete Mathematics. 345:112941
Autor:
Orlando Lee
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Neste trabalho estudamos vários tipos de problemas envolvendo circuitos em grafos mistos. Tais grafos generalizam a noção de grafos orientados e não-orientados, no sentido de poderem conter tanto arcos como arestas. O seguinte problema é tratado
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::04ea77ec11bc9910a860d9c428145e55
https://doi.org/10.11606/t.45.1999.tde-20210729-024308
https://doi.org/10.11606/t.45.1999.tde-20210729-024308
Publikováno v:
Anais do VI Encontro de Teoria da Computação (ETC 2021).
Let $k$ be a positive integer. A \emph{partial $k$-coloring} of a digraph $D$ is a set $\calC$ of $k$ disjoint stable sets and has \emph{weight} defined as $\sum_{C \in \calC} |C|$. An \emph{optimal} $k$-coloring is a $k$-coloring of maximum weight.