Zobrazeno 1 - 10
of 121
pro vyhledávání: '"Onishchik, A."'
Autor:
Onishchik, Arkady
Publikováno v:
Communications in Mathematics, Volume 30 (2022), Issue 3 (Special issue: in memory of Arkady Onishchik) (December 21, 2022) cm:9613
Here, I study the problem of classification of non-split supermanifolds having as retract the split supermanifold $(M,\Omega)$, where $\Omega$ is the sheaf of holomorphic forms on a given complex manifold $M$ of dimension $> 1$. I propose a general c
Externí odkaz:
http://arxiv.org/abs/2205.12308
Autor:
Onishchik, Arkady
Publikováno v:
Communications in Mathematics, Volume 30 (2022), Issue 3 (Special issue: in memory of Arkady Onishchik) (December 14, 2022) cm:10455
The "curved" super Grassmannian is the supervariety of subsupervarieties of purely odd dimension $k$ in a~supervariety of purely odd dimension $n$, unlike the "usual" super Grassmannian which is the supervariety of linear subsuperspacies of purely od
Externí odkaz:
http://arxiv.org/abs/2204.11036
Autor:
Onishchik, Arkady
Publikováno v:
Communications in Mathematics, Volume 30 (2022), Issue 3 (Special issue: in memory of Arkady Onishchik) (December 14, 2022) cm:10456
Let $\mathfrak{d}$ be the Lie superalgebra of superderivations of the sheaf of sections of the exterior algebra of the homogeneous vector bundle $E$ over the flag variety $G/P$, where $G$ is a simple finite-dimensional complex Lie group and $P$ its p
Externí odkaz:
http://arxiv.org/abs/2204.11033
Autor:
Onishchik, A. L., Vishnyakova, E. G.
Publikováno v:
Transformation groups, 2013, Volume 18, Issue 2, pp 483-505
An important part of the classical theory of real or complex manifolds is the theory of (smooth, real analytic or complex analytic) vector bundles. With any vector bundle over a manifold (M,F) the sheaf of its (smooth, real analytic or complex analyt
Externí odkaz:
http://arxiv.org/abs/1110.3908
Autor:
Brudnyi, A., Onishchik, A.
We study the de Rham 1-cohomology H^1_{DR}(M,G) of a smooth manifold M with values in a Lie group G. By definition, this is the quotient of the set of flat connections in the trivial principle bundle $M\times G$ by the so-called gauge equivalence. We
Externí odkaz:
http://arxiv.org/abs/math/0001086
Autor:
Arkady Onishchik
Here, I study the problem of classification of non-split supermanifolds having as retract the split supermanifold $(M,\Omega)$, where $\Omega$ is the sheaf of holomorphic forms on a given complex manifold $M$ of dimension $> 1$. I propose a general c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::070fd46768140fe0c7cac8b55d303593
https://cm.episciences.org/9613
https://cm.episciences.org/9613
Autor:
Arkady Onishchik
The "curved" super Grassmannian is the supervariety of subsupervarieties of purely odd dimension $k$ in a~supervariety of purely odd dimension $n$, unlike the "usual" super Grassmannian which is the supervariety of linear subsuperspacies of purely od
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2efc39b558750794b43641a64d5e2ba6
https://doi.org/10.46298/cm.10455
https://doi.org/10.46298/cm.10455
Autor:
Onishchik, A.L.
Publikováno v:
In Journal of Algebra 2007 313(1):320-342
Autor:
Arkadi L. Onishchik
Publikováno v:
Lie Groups, Geometric Structures and Differential Equations — One Hundred Years after Sophus Lie, T. Morimoto, H. Sato and K. Yamaguchi, eds. (Tokyo: Mathematical Society of Japan, 2002)
We study the problem of lifting analytic actions of a Lie group $G$ to a non-split complex analytic supermanifold $(M, \mathcal{O})$ from its retract $(M, \mathcal{O}_{\mathrm{gr}})$. In the case when $G$ is compact (or complex reductive), two criter