Zobrazeno 1 - 10
of 41
pro vyhledávání: '"One-parameter groups"'
Autor:
CHRISTENSEN, JOHANNES, THOMSEN, KLAUS
Publikováno v:
Journal of Operator Theory, 2016 Jan 01. 76(2), 449-471.
Externí odkaz:
https://www.jstor.org/stable/26432285
Publikováno v:
Monatshefte für Mathematik, 201(2)
This paper provides maximal function characterizations of anisotropic Triebel–Lizorkin spaces associated to general expansive matrices for the full range of parameters $$p \in (0,\infty )$$ p ∈ ( 0 , ∞ ) , $$q \in (0,\infty ]$$ q ∈ ( 0 , ∞
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Förg-Rob Wolfgang
Publikováno v:
ESAIM: Proceedings and Surveys, Vol 46, Pp 14-22 (2014)
The Pilgerschritt transform was introduced by Roman Liedl, Innsbruck, in the late seventies of the last century. He came up with the idea for this transform after studies of the Volterra product integral and dealing with questions in iteration theo
Externí odkaz:
https://doaj.org/article/b220aa249cec410c9cc61fbeab10bd9f
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Monatshefte für Mathematik
Continuing previous work, this paper provides maximal characterizations of anisotropic Triebel-Lizorkin spaces $$\dot{\textbf{F}}^{\alpha }_{p,q}$$ F ˙ p , q α for the endpoint case of $$p = \infty $$ p = ∞ and the full scale of parameters $$\alp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8e3c93d7cd557cbd0cd215149e24fb98
Autor:
Wolfgang Förg-Rob
Publikováno v:
ESAIM: Proceedings and Surveys, Vol 46, Pp 14-22 (2014)
The Pilgerschritt transform was introduced by Roman Liedl, Innsbruck, in the late seventies of the last century. He came up with the idea for this transform after studies of the Volterra product integral and dealing with questions in iteration theory
Autor:
Klaus Thomsen, Johannes Christensen
Publikováno v:
Christensen, J & Thomsen, K 2016, ' Diagonality of actions and KMS weights ', Journal of Operator Theory, vol. 76, no. 2, pp. 449-471 . https://doi.org/10.7900/jot.2015dec15.2098
The paper contains a description of a connection between diagonal actions and certain KMS weights on groupoid $C^{*}$-algebras. It furthermore contains the realization of a graph $C^{*}$-algebra of a countable graph as the groupoid $C^{*}$-algebra of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2c9798e8579fd01b132a0ce0976c6995
http://arxiv.org/abs/1512.05086
http://arxiv.org/abs/1512.05086
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.