Zobrazeno 1 - 10
of 22 133
pro vyhledávání: '"One-Hot Encoding"'
Autor:
Williams, Christopher K. I.
This paper investigates the consequences of encoding a $K$-valued categorical variable incorrectly as $K$ bits via one-hot encoding, when using a Na\"{\i}ve Bayes classifier. This gives rise to a product-of-Bernoullis (PoB) assumption, rather than th
Externí odkaz:
http://arxiv.org/abs/2404.18190
Categorical features are present in about 40% of real world problems, highlighting the crucial role of encoding as a preprocessing component. Some recent studies have reported benefits of the various target-based encoders over classical target-agnost
Externí odkaz:
http://arxiv.org/abs/2312.16930
Autor:
Zlatić, Lazar
This paper proposes an algorithm that implements binary encoding of the categorical features of neural network model input data, while also implementing changes in the forward and backpropagation procedures in order to achieve the property of having
Externí odkaz:
http://arxiv.org/abs/2311.05911
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Images are loaded with semantic information that pertains to real-world ontologies: dog breeds share mammalian similarities, food pictures are often depicted in domestic environments, and so on. However, when training machine learning models for imag
Externí odkaz:
http://arxiv.org/abs/2308.00607
Gradient-boosted decision trees (GBDT) are widely used and highly effective machine learning approach for tabular data modeling. However, their complex structure may lead to low robustness against small covariate perturbation in unseen data. In this
Externí odkaz:
http://arxiv.org/abs/2304.13761
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Applied Informatics and Computing, Vol 7, Iss 1, Pp 63-73 (2023)
Penelitian ini bertujuan untuk membandingkan metode one-hot-encoding, Gower distance yang dikombinasikan dengan algoritma k-means, DBSCAN, dan OPTICS, serta k-prototype untuk pengelompokan data bertipe campuran. Dataset yang digunakan dalam penelitia
Externí odkaz:
https://doaj.org/article/9cee9c1a27a3466a87c5c7146d9e3b22
Within the quantum computing, there are two ways to encode a normalized vector $\{ \alpha_i \}$. They are one-hot encoding and binary coding. The one-hot encoding state is denoted as $\left | \psi_O^{(N)} \right \rangle=\sum_{i=0}^{N-1} \alpha_i \lef
Externí odkaz:
http://arxiv.org/abs/2206.11166