Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Ondřej Zindulka"'
Publikováno v:
Fundamenta Mathematicae.
Autor:
Marion Scheepers, Ondřej Zindulka
Publikováno v:
Contemporary Mathematics ISBN: 9781470450991
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cc4355e7cc3447fa021c1ab31fdd6111
https://doi.org/10.1090/conm/755
https://doi.org/10.1090/conm/755
Publikováno v:
Archive for Mathematical Logic. 55:105-131
The notion of strong measure zero is studied in the context of Polish groups and general separable metric spaces. An extension of a theorem of Galvin, Mycielski and Solovay is given, whereas the theorem is shown to fail for the Baer---Specker group $
Autor:
Ondřej Zindulka
If $X$ is an analytic metric space satisfying a very mild doubling condition, then for any finite Borel measure $\mu$ on $X$ there is a set $N\subseteq X$ such that $\mu(N)>0$, an ultrametric space $Z$ and a Lipschitz bijection $\phi:N\to Z$ whose in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c368b776d3af2b557df050249a93f456
http://arxiv.org/abs/1802.08095
http://arxiv.org/abs/1802.08095
Autor:
Ondřej Zindulka
By the Galvin–Mycielski–Solovay theorem, a subset X of the line has Borel’s strong measure zero if and only if $M+X\neq \mathbb {R}$ for each meager set M.A set $X\subseteq \mathbb {R}$ is meager-additive if $M+X$ is meager for each meager set
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::492143874124f754ab3c019164001040
Autor:
Ondřej Zindulka, Jan Malý
A mapping $$f:X\rightarrow Y$$ between metric spaces is called little Lipschitz if the quantity $$\begin{aligned} \mathrm{lip}\,f(x)=\liminf _{r\rightarrow 0}\,\frac{\mathrm{diam}\,f(B(x,r))}{r} \end{aligned}$$ is finite for every $$x\in X$$ . We pro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6c8340b8d58d9468e01850cfd4df155b
Publikováno v:
Archive for Mathematical Logic. 52:543-567
We investigate the following weak Ramsey property of a cardinal ?: If ? is coloring of nodes of the tree ? \mathfrak{d}}$$ is regular, then $${{\kappa \rightsquigarrow (\kappa)^{ < \omega}_{\omega}}}$$ and that $${\mathfrak{b}}$$ $${(\mathfrak{b})^{
Autor:
Ondřej Zindulka
Publikováno v:
Fundamenta Mathematicae. 218:95-119
Autor:
Ondřej Zindulka, Aleš Nekvinda
Publikováno v:
Order. 29:545-558
A metric space (X, d) is called monotone if there is a linear order < on X and a constant c such that d(x, y) ⩽ c d(x, z) for all x < y < z in X. Topological properties of monotone metric spaces and their countable unions are investigated.
Autor:
Ondřej Zindulka, Aleš Nekvinda
Publikováno v:
Fundamenta Mathematicae. 213:221-232